
Faculty of Computer Science Institute of Systems Architecture, Chair of Computer Networks

Thesis (Diplomarbeit), Single Volume Edition

TOWARDS A RELIABLE ARCHITECTURE
FOR CROWDSOURCING IN CONTEXT OF
THE MAPBIQUITOUS PROJECT
Dipl.-Inf. Tenshi C. Hara

Supervised by:

Dr.-Ing. Thomas Springer
Responsible docent:

Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill
Submitted on 25 October 2012 (original deadline: 30 November 2012)

Date of the ‘single volume edition’ reprint: 28 January 2013

‘Isn’t it enough to see that a garden is beautiful without having to believe that
there are fairies at the bottom of it too?’

Douglas Noël Adams

ABSTRACT

Extension of navigation applications to indoor use is currently under intensive research. There
exist several promising concepts, for example the MapBiquitous project at TU Dresden. How-
ever, all concepts share the problem of ascertaining reliable map data and infrastructure infor-
mation such as the position of WLAN access points. Further, maintenance and correction of
data is challenging. A promising ansatz is to outsource ascertainment and correction of the data
from the service provider to the service users. This ansatz is called ‘crowdsourcing’. There exist
different derivates of crowdsourcing sharing diverse aspects, but not any commonly accepted
definition. An attempt of a definition based on an existing, however very general definition is
provided, resulting in a taxonomy classifying crowdsourcing by its user awareness and data im-
mediacy. Utilizing the taxonomy conceived, an architecture extension compliant to German laws
is introduced to MapBiquitous in order to support different classes of crowdsourcing. German
law is keen on data protection. The extension conceived centres the ‘indoor navigation server
access network entity’ (INSANE) which acts as a proxy for crowdsourcing communication be-
tween MapBiquitous clients and building servers, effectively concealing the crowdsourcing par-
ticipants’ identity from the crowdfunders. Addressing security and privacy issues, a user man-
agement and access control lists as well as concealing techniques are applied, and avoiding the
obvious single point of failure at the INSANE, utilisation of a distributed hash table is proposed.
The concept is exemplarily implemented and proven to be of good performance and scalability.

c©2012, Randall Munroe
CC-BY-NC 2.5 – xkcd.com/1060

1

xkcd.com/1060

2

3

4

CONFIRMATION OF AUTOGRAPHIC WORK

Accordant §11, paragraph 6, sentence 2 of the ‘Prüfungsordnung für den Studiengang Informa-
tik an der Technischen Universität Dresden in der Fassung vom 11. Oktober 2004’, I confirm that
I independently prepared the following parts of this thesis:

• the introduction and motivation,
• the preliminaries,
• the summary of existing crowdsourcing definitions (not to be mistaken with the existing

concepts, solutions or ansatzes) and attempt at a compatible definition with a correspond-
ing taxonomy of crowdsourcing,

• the requirements review, especially the legal aspects of data protection issues as well as
the data actually required by a crowdsourced MapBiquitous,

• within the crowdsourced optimization concept: MapBiquitous’ server-side of the crowd-
sourcing architecture, including but not limited to the INSANE as well as the crowdsourced
building server,

• within the proof of concept: the server-side implementation of the crowd-sourced opti-
mization concept as well as the surrogate for the directory server, and last but not least

• any required adjustments to the corporate design TEX-template of the TU Dresden.

The other parts were prepared exclusively by and/or as a group-task in close liaison with Gerd
Bombach, who prepared his assignment paper (Belegarbeit) with matching topic (explicit crowd-
sourcing; MapBiquitous’ client-side) in parallel to this thesis.

Further, I confirm that I only used the references and auxiliary means indicated within the foot-
notes and at the end of this thesis.

Dresden, 25 October 2012

5

6

CONTENTS

The Task 3

List of Definitions and Theorems 13

List of Figures 15

List of Tables 18

Introduction and Motivation 21

Part I Propaedeutics 25

1 Preliminaries 27

1.1 Mathematic Fundamentals . 29

1.2 Further Definitions . 30

1.3 The MapBiquitous Project . 32

1.3.1 History . 32

1.3.2 Functional range . 32

1.3.3 Architecture . 33

1.3.4 MapBiquitous data – storage and access 34

1.3.5 Navigation . 37

7

2 Crowdsourcing 39

2.1 Attempt at a Definition . 41

2.2 Taxonomy of Crowdsourcing . 42

2.3 Social Sensing . 48

3 Existing Crowdsourcing Concepts 49

3.1 Scientific Ansatzes . 51

3.1.1 Geowiki: Creation of Outdoor Maps utilising Crowdsourcing 51

3.1.2 Motivation of the Crowd . 52

3.1.3 GSM Measurements as an unaware indirect Crowdsourcing Method 53

3.2 Commercial Ansatzes . 53

3.2.1 Google Indoor Maps . 53

3.2.2 Unaware Crowdsourcing: Traffic Congestion Prediction 54

3.3 Conclusion . 54

4 Related Work 55

4.1 BOINC – Berkeley Open Infrastructure for Network Computing 58

Part II Proceedings 63

5 Requirements Review 67

5.1 Data Protection Issues . 70

5.1.1 Legal Boundaries in the Federal Republic of Germany 71

5.1.2 Collectible Data . 73

5.1.3 Protectable Data . 73

5.2 Data required by MapBiquitous . 74

5.2.1 MapBiquitous: Data Collection, Storage, Processing and Protection 74

5.3 Conclusion . 75

8 Contents

6 Crowdsourced Optimisation Concept 79

6.1 Crowdsourcing Client . 82

6.2 Crowdfunding Server . 85

6.2.1 Anonymity and Identification of Clients . 85

6.2.2 Safety from Interception through Encryption 89

6.2.3 Unaltered Directory Server and Modified Building Server 90

6.2.4 Indoor Navigation Server Access Network Entity 92

6.2.5 Access Control Lists, Privilege Pointers, Resigning and Re-encryption . . . 93

6.2.6 Database Structure: Building Server amendment and new INSANE 97

6.2.7 Optimisation towards Scalability: Distributed Hash Tables with DNS 101

6.2.8 Summary . 105

6.3 Interplay of Client and Server . 105

6.3.1 Extensible MapBiquitous Crowdsourcing Communication Protocol 108

6.4 Conclusion . 110

7 Proof of Concept within MapBiquitous 111

7.1 Problems . 113

7.2 Deviations from the Concept . 115

7.3 The Implementation . 116

7.4 Conclusion . 118

8 Evaluation 121

8.1 Conformity of the Implementation to the Design Goals 123

8.2 Comparison of old and new Communication . 126

8.2.1 Comparison of the WFS requests . 126

8.2.2 Comparison of WLAN-Fingerprinting Communication 129

8.2.3 Conclusion for Fingerprinting and Positioning 133

8.3 Resource Use and Communication Load compared to ‘Default Websites’ 134

8.3.1 Exemplary Recommendations for Deployment 135

8.4 Conclusion . 137

Contents 9

9 Conclusion and Future Work 139

9.1 Conclusion . 141

9.2 Future Work . 141

Part III Appendix 143

A Milestones 145

B Glossary 147

C References 149

C.1 Auxiliary Means . 153

Part IV Supplementary 157

D Proofs and Definitions 161

E Code Snippets 163

E.1 Scheduled Task on CARLOS . 163

E.2 HTTP-Handler Module in the INSANE and BSCSM 164

E.3 getCountry() and associated Functions . 166

E.4 JSON_Handler.php . 167

E.5 Exemplary Definition Block . 168

F Tables 173

F.1 Fingerprinting Overhead Results . 173

F.2 Positioning Overhead Results . 174

F.3 Hardware used for Performance and Scalability Tests 175

F.4 Performance and Scalability Results . 176

F.5 Unaccounted-for Performance and Scalability Results 176

F.5.1 WFS-Series . 176

F.5.2 Fingerprinting Series . 178

10 Contents

G Use Cases 181

G.1 Client→INSANE Communication . 181

G.1.1 Setter . 181

G.1.2 Getter . 184

G.1.3 Retrieval of a User’s own Submitter-ID . 185

G.2 INSANE→Building Server Communication . 186

G.2.1 Setter . 186

G.2.2 Getter . 187

G.3 INSANE←Building Server Communication . 188

G.3.1 Setter . 188

H Interface Definitions 191

H.1 Client→INSANE . 191

H.1.1 INSANE-internal Setter . 191

H.1.2 INSANE-internal Getter . 192

H.1.3 Passed-through to BSCSM Setter . 195

H.1.4 Passed-through to BSCSM Getter . 199

H.2 INSANE→BSCSM . 200

H.2.1 BSCSM-internal Setter . 200

H.2.2 BSCSM-internal Getter . 202

H.2.3 INSANE-endorsed BSCSM-internal/external Setter 204

H.3 INSANE←BSCSM . 205

H.3.1 INSANE-internal Setter . 205

H.4 ∗ →Directory Service . 205

H.4.1 Directory Service Getter . 205

I Unaccounted-for Evaluation Settings 207

I.0.2 WFS Request Series . 210

I.0.3 Fingerprinting Request Series . 212

Contents 11

12 Contents

DEFINITIONS AND THEOREMS

1.1.1 Definition: ‘Subsets of Natural Numbers’ . 29

1.1.2 Definition: ‘Computable Real Numbers’ . 29

1.1.3 Definition: ‘(Sorted) n-Tuple’ . 29

1.1.4 Definition: ‘Matrix Row Extraction (Column Extraction; Element Extraction)’ . . 30

1.2.1 Definition: ‘Alphabet’ . 30

1.2.2 Definition: ‘Word’ . 30

1.2.3 Definition: ‘Formal Language’ . 30

1.2.4 Definition: ‘Concatenation’ . 31

1.2.5 Definition: ‘Kleene Star’ . 31

1.2.6 Definition: ‘Regular Expressions’ . 31

1.2.7 Definition: ‘Formal Language of a Regular Expression’ 32

2.1.1 Definition: ‘Crowdsourcing’ . 41

2.2.1 Definition: ‘Taxonomy of Crowdsourcing’ . 43

2.2.4 Definition: ‘Crowd Awareness’ . 45

6.2.1 Definition: ‘User and client’ . 88

6.2.2 Definition: ‘User-individual username’ . 88

6.2.3 Definition: ‘Client-individual identification token (clientID)’ 88

6.2.4 Definition: ‘User-individual password’ . 89

13

6.2.5 Definition: ‘User-individual submitter identification token’ 89

6.2.6 Definition: ‘Privilege Pointer’ . 93

6.2.7 Definition: ‘Privilege Pointer Collection’ . 93

D.0.1 Theorem: ‘Dijkstra’s algorithm’ . 161

14 Definitions and Theorems

FIGURES

1.3.1 MapBiquitous: Basic architecture . 33

1.3.2 MapBiquitous: Simplified Client . 36

1.3.3 MapBiquitous: Loader . 36

1.3.4 MapBiquitous: LOD1 and LOD2 loading . 37

1.3.5 MapBiquitous: LOD3 loading . 37

1.3.6 MapBiquitous: Renderer-Loader messages . 38

2.2.2 Taxonomy of crowdsourcing . 44

2.2.4 Hybrids within the taxonomy of crowdsourcing 46

2.3.1 Similarity of Social Sensing and Crowdsourcing 48

4.1.1 Communication within the BOINC architecture 60

4.1.2 Exemplary BOINC Architecture . 61

5.3.1 Relations of the Design Goals . 76

6.0.2 Crowdsourced MapBiquitous . 81

6.0.3 Proposed Modifications to MapBiquitous’ Architecture (simplified) 83

6.0.4 Communication Paths in the proposed Modifications to MapBiquitous 84

6.2.1 Proposed Modifications to MapBiquitous’ Architecture 86

6.2.7 Modifications to the Building Server . 90

15

6.2.8 New Component: The INSANE . 92

6.2.11 ACL on Building Server . 94

6.2.12 Capabilities on Client . 94

6.2.13 Interplay of ACL and Capabilities . 95

6.2.14 MapBiquitous’ Crowdsourcing Trust Path . 96

6.2.15 MapBiquitous’ Crowdsourcing Database Structure 98

6.2.16 The INSANE extended with Distributed Hash Table 101

6.2.17 Example for an INSANE distribution . 102

6.2.18 Example for an INSANE distribution with DNS-Extension 104

6.2.19 MapBiquitous’ Crowdsourcing Architecture . 106

6.3.1 Interplay Client/Server: Anonymity-Problem . 107

6.3.2 Interplay Client/Server: Anonymity- and Bottleneck-Problem solved 108

7.2.1 Actual MapBiquitous Architecture . 116

7.3.1 WFS-Request via Building Server Crowdsourcing Module 119

8.2.3 WFS Overheads . 128

8.2.4 Fingerprinting Overheads . 131

8.2.5 Positioning Overheads . 133

8.3.1 Performance & Scalability Statistics . 135

8.3.3 Scalability: RAM Recommendations . 138

I.0.1 LAN Setting: Conceptual Layout . 208

I.0.2 CARLOS Setting: Conceptual Layout . 208

I.0.3 the-tester.de Setting: Conceptual Layout . 209

I.0.4 hara.tc Setting: Conceptual Layout . 209

I.0.5 LAN Setting: Packet Transmission Statistics, Series I 210

I.0.6 ‘CARLOS’ Setting: Packet Transmission Statistics, Series I 211

I.0.7 the-tester.de Setting: Packet Transmission Statistics, Series I 211

I.0.8 hara.tc Setting: Packet Transmission Statistics, Series I 212

16 Figures

I.0.9 LAN Setting: Packet Transmission Statistics, Series II 213

I.0.10 ‘CARLOS’ Setting: Packet Transmission Statistics, Series II 214

I.0.11 the-tester.de Setting: Packet Transmission Statistics, Series II 214

I.0.12 hara.tc-Setting: Packet Transmission Statistics, Series II 215

Figures 17

18 Figures

TABLES

8.1.1 Compliance with Design Goals . 123

8.2.1 Results for exemplary WFS requests . 127

8.2.2 Results for exemplary WFS requests in % . 127

8.3.2 Scalability: RAM Recommendations . 137

F.1.1 Results for Fingerprinting Submissions in % . 173

F.2.1 Results for Positioning % . 174

F.3.1 Server Hardware Configuration of the Evaluation 175

F.3.2 Client Hardware Configuration of the Evaluation 175

F.4.1 Performance & Scalability Results . 176

F.5.1 WFS results: LAN Setting . 176

F.5.2 WFS results: ‘CARLOS’ Setting . 177

F.5.3 WFS-Results: the-tester.de setting . 177

F.5.4 WFS results: hara.tc Setting . 178

F.5.5 Fingerprinting results: LAN Setting . 178

F.5.6 Fingerprinting results: ‘CARLOS’ Setting . 179

F.5.7 Fingerprinting results: the-tester.de Setting . 179

F.5.8 Fingerprinting Results: hara.tc Setting . 180

19

20 Tables

INTRODUCTION AND MOTIVATION

‘Biology and computer science – life and computation – are related. I am confi-
dent that at their interface great discoveries await those who seek them.’

Leonard Adleman

Ubiquitously one can find location-based services. One does not think about the actual location-
based service, rather one uses it without consideration. For this, cellular phones have evolved
from only providing mobile access to telephony services to providing a wide range of additional
features: The quick and swift navigation to a point of interest or a price comparison while look-
ing at an article in a shop. Nowadays, the mobile phone is frequently used for such tasks; hence,
the term ‘smartphone’ has emerged. But, in order to use these services, not only must the ser-
vice be usable and accepted by users; beyond that, a well founded base of data is required. The
obvious question at hand is, where does the data come from? Should it be exclusively provided
by the owner of a building or shop, bearing the risk of presenting outdated data and thus lead-
ing to customers’ swizz? Or should it rather be provided by a third party, allowing the owner to
focus on the primary business? Maybe a mixture would be good, allowing the owner to review
results presented by the third party? And in general, how is the data maintained; how to keep
it up to date? – A possible solution might be to involve the user of a location-based service into
updating and correcting the data. This concept is well known and established as ‘crowdsourc-
ing’ and shall be of focus within this thesis (Diplomarbeit). The user of the location-based ser-
vice consciously or unconsciously, continuously or intermittently provides data to the location-
based service. The data provided is either current, new or updated.

There exists the MapBiquitous project at the Technical University of Dresden, a project designed
to provide feasible indoor navigation services, exemplary implemented on Android-driven smart-
phones. Obtaining and maintaining data, such as information on points of interest or WLAN fin-
gerprints, has proven to be difficult in context of the existing MapBiquitous architecture; there-
fore, it is desirable to amend the existing architecture with crowdsourcing capabilities, either
proving or disproving feasibility of crowdsourcing in the context of indoor navigation services.

21

As there is no common consensus on what crowdsourcing actually is and how it can be classi-
fied, a highly motivated desire to define a generally usable taxonomy of crowdsourcing exists.

The remainder of this thesis will continue in four parts; at first a propaedeutics part contain-
ing four chapters, second a proceedings part with another four chapters starting on page 64,
thirdly an appendix containing important appendices starting on page 144 and lastly further ap-
pendices in the supplementary. In the propaedeutics part, the first chapters will provide some
mathematic and general fundamentals which the author has identified as required preliminary
knowledge. It will conclude with an overview of the current state of the MapBiquitous archi-
tecture in section 1.3. The fundamentals are followed by an attempt of providing a commonly
acceptable definition of crowdsourcing and a taxonomy of the same. Chapter 2 will also anal-
yse crowdsourcing in the context of social sensing and provide some information on terms such
as ‘explicit crowdsourcing’ as well as ‘implicit crowdsourcing’. In the then following chapter 2,
two existing examples of crowdsourcing are presented, concluding the propaedeutics part.
With respect to amending the MapBiquitous architecture, chapter 5 as proem of the proceed-
ings part will review the requirements to such amendments, with a special focus on data pro-
tection issues in Germany in the first section of the chapter. Concluding the requirements re-
view, a crowdsourced optimisation concept to amend the MapBiquitous architecture is pre-
sented and discussed in chapter 6. The first section of the chapter summarises Gerd Bombach’s
work [Bom12] on the client’s side, while section 6.2 presents the concept on servers’ side.

Comment

This thesis (Diplomarbeit) and Gerd Bombach’s assignment paper (Belegarbeit) [Bom12]
are being prepared in parallel, working on the same topic as a team effort. While this the-
sis focuses on implicit crowdsourcing aspects, which can mainly be dealt with on servers’
side, [Bom12] focuses on explicit crowdsourcing, which – as Definition 2.2.1 will show – ob-
viously includes user awareness, so it should be dealt with on the client’s side. Therefore, it
has been decided to divide the workload into client side and server side aspects. Accordant
§11, paragraph 6, sentence 2 of the ‘Prüfungsordnung für den Studiengang Informatik an der
Technischen Universität Dresden in der Fassung vom 11. Oktober 2004’, the individual contri-
butions are clearly emphasised in the confirmation at the beginning of this thesis.

After presenting both sides of the proposed optimisation architecture, the interplay of the two
is discussed. The proof-of-concept implementation is presented and discussed in the follow-
ing chapter 7, where the focus is set on difficulties when implementing the conceptual design
into actual executable code, be it in Java for the Android ADK or Apache Tomcat, or in PHP for
Apache httpd. The implementation is then evaluated in chapter 8 with respect to feasibility, ser-
viceability and/or viability. Closing the proceedings part, future research as well as further mod-
ifications to the developed concept as well as additional ideas are presented in chapter 9. Con-
cluding the main volume of this thesis, the appendix presents some proofs and further defini-
tions, the milestones set for the interplay of this thesis and [Bom12], as well as a glossary on
page 147 defining some additional terms. The appendix concludes with the list of references
and auxiliary means starting on page 152. The supplementary (part IV) focuses on selected
code snippets, tables, use cases and finally the interface definitions.

22 Tables

The reader shall note: This thesis is composed using British Standard English; hence, words
such as ‘programme’ or ‘analyse’ are used, rather than ‘program’ or ‘analyze’. Furthermore,
some terms are explained directly within the footer of a page as a footnote1, while others –
mostly not so important ones – are briefly explained in the glossary at the end of this assign-
ment paper (refer to page 147). Should there be at least five non-academic sources for data,
information, specifications, assertions, declarations or definitions, this thesis will treat them
as part of general knowledge and not provide further reference. For all other – to the best of
the author’s knowledge – not in general knowledge, references are provided in the list of ref-
erences at the end of this thesis (please refer to page 152). Additionally, it shall be noted that
some chapters and/or sections may provide a set of references in their introducing paragraph;
hence, only important references will be marked as such. Should a statement not be referenced
explicitly within a paragraph, the reader is kindly requested to refer to the references given in
the introduction of the chapter and/or section at hand.

Also, it shall be noted that the term ‘if and only if’ is abbreviated by ‘iff’, and is used throughout
this thesis to shorten the sentences; hence increasing readability.

By times, images/figures will be provided in order to illustrate something. For optimal flow of
text, the used typesetting tool (LATEX) will place these near the point of reference, but this might
not always be easily possible; hence the image/figure shall be looked for on one of the next or
preceding pages if it is not intuitively near the point of reference.

Short of one final comment, the reader shall be alluded to the fact that each part of this thesis
presents its own table of contents on the reverse of the part’s front page; hence, it is not neces-
sary to refer to the general table of contents on page 11 when seeking for specific contents of a
part.

Finally, the author wishes to point out that this book represents the ‘single volume edition’ reprint
of the original thesis2. Therefore, some phrasing may seem odd as the supplementary is explic-
itly referenced rather than only the corresponding content of the supplementary, only.

1 For example, this is a footnote.
2 The original thesis was published in two volumes; the first volume containing parts 1 through 3 and the second vol-

ume containing the supplementary part 4.

Tables 23

24 Tables

PART I PROPAEDEUTICS

Contents of this Part
1 Preliminaries 27

1.1 Mathematic Fundamentals . 29
1.2 Further Definitions . 30
1.3 The MapBiquitous Project . 32

1.3.1 History . 32
1.3.2 Functional range . 32
1.3.3 Architecture . 33
1.3.4 MapBiquitous data – storage and access . 34
1.3.5 Navigation . 37

2 Crowdsourcing 39
2.1 Attempt at a Definition . 41
2.2 Taxonomy of Crowdsourcing . 42
2.3 Social Sensing . 48

3 Existing Crowdsourcing Concepts 49
3.1 Scientific Ansatzes . 51

3.1.1 Geowiki: Creation of Outdoor Maps utilising Crowdsourcing 51
3.1.2 Motivation of the Crowd . 52
3.1.3 GSM Measurements as an unaware indirect Crowdsourcing Method 53

3.2 Commercial Ansatzes . 53
3.2.1 Google Indoor Maps . 53
3.2.2 Unaware Crowdsourcing: Traffic Congestion Prediction 54

3.3 Conclusion . 54

4 Related Work 55
4.1 BOINC – Berkeley Open Infrastructure for Network Computing 58

Figures within this Part
1.3.1 MapBiquitous: Basic architecture . 33
1.3.2 MapBiquitous: Simplified Client . 36
1.3.3 MapBiquitous: Loader . 36
1.3.4 MapBiquitous: LOD1 and LOD2 loading . 37
1.3.5 MapBiquitous: LOD3 loading . 37
1.3.6 MapBiquitous: Renderer-Loader messages . 38
2.2.2 Taxonomy of crowdsourcing . 44
2.2.4 Hybrids within the taxonomy of crowdsourcing . 46
2.3.1 Similarity of Social Sensing and Crowdsourcing . 48
4.1.1 Communication within the BOINC architecture . 60
4.1.2 Exemplary BOINC Architecture . 61

1 PRELIMINARIES

‘All the tissues and organs of the body originate from a microscopic structure (the
fertilized ovum), which consists of a soft jelly-like material enclosed in a membrane
and containing a vesicle or small spherical body inside which are one or more denser
spots. This may be regarded as a complete cell.’

Opening words of Gray’s ‘Anatomy of the Human Body’ (1858), Chapter I, Section 1

28 Chapter 1 Preliminaries

PRELIMINARIES

The contents of this preliminary chapter should be known from undergraduate university classes,
but they should be briefly repeated in order to ensure that a solid common ground is met when
referencing them. Knowledge of such as operators, sets, fields, matrices, the set of natural
numbers N (including 0), relations, functions, et cetera is assumed. The herein defined may not
be explicitly recalled in the course of this thesis, but it may proof important when reviewing in-
ternals of database operations or data(set) handling.

1.1 MATHEMATIC FUNDAMENTALS

This section will establish the basic mathematic concepts behind array, looping, etc. They will
mostly not be referenced to in the written part of this thesis, but they are important for the im-
plementation. It is actually a compilation of definitions and theorems without any further prose
interrupting them.

Definition 1.1.1 – Subsets of Natural Numbers

Subsets N≥i ⊆ N contain only numbers recursively derivable from i ∈ N, meaning all natural
numbers larger or equal to i.
The set N≥1 is often noted as N+ whereas N≥0 = N.
Finite subsets N≤i ⊂ N derive from 0 and terminate recursion with i, whereas N+

≤i ⊂ N
+ derive

from 1 and terminate recursion with i.

Definition 1.1.2 – Computable Real Numbers

Rc ⊆ R is the set of Real Numbers computable by a Turing-Machine.

Definition 1.1.3 – (Sorted) n-Tuple

A (sorted) n-tuple has the shape of t = (t1, t2, . . . , tn). The type of the ti is irrelevant and does
not need to be the same for any ti and tj . For sorted n-tuples their order may never be de-
stroyed by swapping them. The elements of t can be extracted or modified using the follow-
ing operations:
• Extraction of the first element: t1 B 1st (t)
• Modification of the first element: 1st (t) B new value
• Extraction of the second element: t2 B 2nd (t)
• Modification of the second element: 2nd (t) B new value
• . . .

Commonly, a 2-tuple is referred to as pair. In more general terms, any n-tuple can be named
following the Latin numeral of n: triple, quadruple, et cetera.

1.1 Mathematic Fundamentals 29

Definition 1.1.4 – Matrix Row Extraction (Column Extraction; Element Extraction)

Let A be a (i × j)-matrix. The matrix row extraction []row,∗ (column extraction []∗,column; ele-
ment extraction []row,column) produces a row vector (a column vector; an object of the matrix’
object type) representing exactly one specified row (column; object) of A.

[
A
]
k,∗ =

a1,1 · · · a1,j
...

. . .
...

ak,1 · · · akj

...
. . .

...
ai,1 · · · ai,j

k,∗

=
(
ak,1 · · · ak,j

)

[
A
]
∗,l =

a1,1 · · · a1,l · · · a1,j

...
. . .

...
. . .

...
ai,1 · · · ai,l · · · ai,j

∗,l

=

a1,l
...

ai,l

[
A
]
k,l =

a1,1 · · · a1,l · · · a1,j
...

. . .
...

. . .
...

ak,1 · · · ak,l · · · ak,j
...

. . .
...

. . .
...

ai,1 · · · ai,l · · · ai,j

k,l

= ak,l

1.2 FURTHER DEFINITIONS

This section continues establishing basic concepts, but focussed more on language theory. As
true for the mathematic fundamentals, these formal definitions will not be referenced in the
written part of this thesis, but they are also very important for the implementation.

Definition 1.2.1 – Alphabet

An alphabet is a finite nonempty set.

Definition 1.2.2 – Word

Let Σ be an alphabet. Then the set Σ∗ of all words over Σ is defined as the set of all finite se-
quences (strings) over Σ and the sequence of length 0 (empty string), denoted by ε.
Words are denoted by listing the elements of the sequence.
The length of a word w = a1a2 · · · an with n ≥ 0 is defined as ‖w‖ B n.

Definition 1.2.3 – Formal Language

Let Σ be an alphabet. A formal language L over Σ is a subset of Σ∗, that is a set of words
over Σ.

L ⊆ {w | w ∈ Σ∗} ⊆ Σ∗ (1.2.1)

30 Chapter 1 Preliminaries

Definition 1.2.4 – Concatenation

Let Σ be an alphabet and L1, L2 two formal languages over Σ. Then the concatenation-opera-
tion · is defined as follows:

L1 · L2 B {u · v | (u ∈ L1) ∧ (v ∈ L2)} (1.2.2)

Instead of u · v and L1 · L2 the valid substitutes uv and L1L2 may be used.

Definition 1.2.5 – Kleene Star

Let Σ be an alphabet and L a formal language over Σ. Concatenating L with itself the Kleene
operator ∗ is defined as follows:

L0 B {ε}

Ln+1 B Ln
· L

L∗ B
⋃

n≥0 Ln
(1.2.3)

Should L not contain the empty word ε, L · L∗ does not contain ε either. A valid notation for
L · L∗ is:

L+ B L · L∗ =
⋃
n≥1

Ln (1.2.4)

Definition 1.2.6 – Regular Expressions

Let Σ be an alphabet. The set of regular expressions over Σ, denoted by RegΣ, is the smallest
set Reg′Σ such that:
• {∅, ε} ⊆ Reg′Σ ,
• Σ ⊆ Reg′Σ ,
• ∀n ∈ N≥0 : ∀r, s ∈ Reg′Σ : (r + s) , (r · s) , r∗, r+, rn ∈ Reg′Σ .

Comment

In descending priority ∗, + and n have the highest priority, followed by ·. The operator + has
the lowest priority. Obeying the so set priorities, parentheses may be omitted. The opera-
tor · may be omitted as well (see equation 1.2.2 in definition 1.2.4). For example, the regular
expression

(
(x · y) +

(
a2 · b

))
can also be written as xy + a2b.

Comment

Conventional definitions of RegΣ do not include the operators + and n since they can be equiv-
alently substituted by expressions using the standard operators. However, the additional op-
erators allow more compact expressions, which in return enhance readability for humans.

1.2 Further Definitions 31

Definition 1.2.7 – Formal Language of a Regular Expression

Let Σ be an alphabet, r, s, t ∈ RegΣ, a ∈ Σ and n ∈ N≥0. The formal language defined by the
regular expression t, denoted by L (t), is defined inductively:
• L (∅) B ∅,
• L (ε) B {ε},
• L (a) B {a},
• L (r + s) B L (r) ∪ L (s),
• L (r · s) B L (r) · L (s),
• L (r∗) B L (r)∗,
• L (r+) B L (r · r∗),

• L
(
rn) B L

r · r · . . . · r︸ ︷︷ ︸
n times

.

1.3 THE MAPBIQUITOUS PROJECT

The ideas expressed about crowdsourcing later in this thesis (refer to chapter 2 and chapter 6)
shall be prototypically implemented in the MapBiquitous project of the Technical University of
Dresden (TU Dresden), while developing the generic concepts independent of an actual imple-
mentation framework.

MapBiquitous provides the base to develop an indoor location-based service, seamlessly inte-
grating itself into existing outdoor location-based services, such as GoogleMaps. The seam-
less transition between indoor and outdoor location-based services is imperative to the project
and one of the core design concepts in order to maximize user experience. As the project is
designed to be a framework for prototypical implementations, future extensions must be sup-
ported; hence the concept to be implemented itself must be extensible. So, being developed
as a proof of concept implementation, MapBiquitous has been the topic of several assignment
papers (Belegarbeiten), theses (Diplomarbeiten) as well as practicals (Komplexpraktika). Hence,
detailed information shall be provided in reference work like [Spr11], [Keß11], [Keß12], [Wer12],
[GKN12] and [DHP+12], so only an overview shall be provided here. Focus shall be on functional
range, architecture and data storage.

1.3.1 History

In the beginning, MapBiquitous was developed to be a application for stationary or mobile per-
sonal computers, such as desktops or laptops. Only later it was ported to support mobile phones,
in particular smartphones running on the Android operating system. This second version is still
being used for a range of student works.

1.3.2 Functional range

The actual goals of MapBiquitous is being a proof of concept implementation for diverse location-
based services within building. Hence, MapBiquitous primarily and natively supports the display
of building maps as known from map services such as Google Maps or OpenStreetMap. Fur-
ther, the so displayed building maps are embedded into the Google Maps API. To now, several

32 Chapter 1 Preliminaries

buildings of the TU Dresden3 have been mapped into these building maps, allowing the high-
lighting of rooms within the buildings. The building maps have been enriched by points of inter-
est (‘POI’) and rudimental navigation data. These POIs and data may be queried and displayed
within the displaying mobile device. As all map related data have been put in context of posi-
tioning and MapBiquitous has the capability to determine a users position using GPS (outdoor)
and WLAN (indoor), MapBiquitous is able to calculate the presumable position of a user within
a building. Extending the positioning to a continuous one, MapBiquitous supports room to room
navigation within buildings or from one building to another.

Navigation to a building (not ‘into’) or to the ‘nearest’ entrance/exit is desirable, but not yet ac-
tually supported. Creation of POIs for entrances/exits is in discussion. Further, navigation per
storey is possible, but inter-storey navigation remains desirable [Gru12].

1.3.3 Architecture

MapBiquitous utilises a decentralised client server architecture as displayed in Figure 1.3.1. On
the left hand the client components are displayed, whereas the right hand displays these server
components. The client components consist of building data stored locally on the mobile device
as well as a loader, a renderer and a locator module. These modules have access to the local
data and can communicate with each other. The server side consists of a directory service and
at least one building server. The directory service provides information upon the responsible
building server whenever a client queries building data which is within the responsibility of that
server, whereas the building server(s) maintain the actual building data.

Figure 1.3.1: The basic architecture of MapBiquitous [Spr11]

The renderer module’s function is the overlay drawing of the ichnography and floor plans of the
diverse buildings, based upon the given building data. The overlay is placed over the map pro-
vided by Google Maps, hence the drawn map is an instance of the Overlay class of the Google
Maps API. Further, the renderer module draws the graphical user interface (‘GUI’), the current
position as well as some additional data into the overlay. Hence, resulting in a classic mapping
and navigation application display.

Current position information is acquired by access to Androids positioning capabilities. The loca-
tor module calculates the current position from the provided position information. As mentioned
above, outside positioning can be done using GPS as long as four GPS-satellites are within line

3 Technische Universität Dresden

1.3 The MapBiquitous Project 33

of sight. Naturally, within building there is no line of sight to GPS-satellites; hence, MapBiq-
uitous relies on WLAN access point data4. Determining the position via WLAN is conducted
either by triangulation5 or by fingerprinting6. Any position acquired is stored in context of the
building data in the local storage of the client and consigned to the renderer module so that it is
displayed within the map overlay.

The loader module implements the actual acquisition of building data. Being consigned the data
to be loaded by the renderer module, the loader module contacts either the directory service
for information on map updates, e.g. after panning/moving the map, or the responsible building
server for actual data such as ichnographies, floor plans, WLAN access point data, etc.).

Finally, MapBiquitous contains a navigation module (not in Figure 1.3.1), which calculates routes
between two points. Hence, the navigation module has access to the local data storage in or-
der to read building and position data as well as to consign route data to be drawn into the map
overlay by the renderer module.

1.3.4 MapBiquitous data – storage and access

The building data used by MapBiquitous are intentionally not stored centralised, but distributed
over several building servers which can be accessed via a directory service. This ensures that
any building data can be considered ‘within the domain’ of building representatives7, allowing
decentralised management of the building data. Naturally, the format and structure differ for di-
rectory service and building server access. Both have in common the runtime access from the
clients, as they can only determine which data are required at runtime.

Any data stored, be it within the client, within a building server or within the directory service,
are stored in the World Geodetic System format of 1984 (WGS-84)8.

Building server

As mentioned earlier, building data are intentionally stored in a distributed fashion on several
building servers, each considering a certain building within its responsibility domain. Hence, a
building server stores vector-based data for ichnographies and floor plans of buildings as well as
position information for WLAN access points within those buildings. Additional semantic data
is stored as well, e.g. floor names, room numbers, room occupancy schedules, etc.pp. To ef-
ficiently access these data, they need to be stored in a well organised way; hence, a layered
structure is used, providing a layer for the ichnography of the building, a separate layer for each
storey as well as a separate layer for positioning. The actual vector-based data are represented
by polygons; hence, establishing ichnography, storeys, staircases, elevator shafts, hallways and
rooms. The additional semantic data are added per polygon. Using the same structure, WLAN
access points are stored as polygons with semantic data, including (but not limited to) the MAC
address. For accessing the building data, the open source Web Feature Service (WFS)9 of the
OGC is used, as WFS offers several HTTP-based methods for exactly this purpose. MapBiqui-
tous utilises the methods GetCapabilities(), DescribeFeatureType() and GetFeature(). Utilising

4 Google uses WLAN access point data to enrich outdoor navigation within cities, where there is not always a clear line
of sight to four GPS-satellites.

5 At least three WLAN access points within the range of reception for planar triangulation or at least 6 WLAN access
points for steric triangulation.

6 Signal strengths of WLAN access points near by are being brought into context with other physical measurands.
7 E.g. the ground keeping unit
8 WGS-84 comprises a standard coordinate ellipsoid for the Earth (spheroidal reference surface) and a gravitational

equipotential geoid that defines the nominal sea level.
9 http://www.opengeospatial.org/standards/wfs – Accessed 7 June 2012

34 Chapter 1 Preliminaries

http://www.opengeospatial.org/standards/wfs

GetCapabilities(), a client can request a list of all available layers of a building. The server re-
sponse additionally includes the semantic data of each layer. Further information such as type
and content of a layer can be requested utilising DescribeFeatureType(). Finally, the entire set is
requested utilising GetFeature(). Nevertheless, the response to either request is always a file in
Geography Markup Language (GML)10 format.

Directory service

Before being able to access a building server, they need to be discovered. Hence, the directory
service is utilised to find building servers responsible for a building in which data are required.
Following the standard structure of data on a directory server, the building server information
are stored on the directory server per available building as a set consisting of the names, the
URLs and the coordinates. The stored URL equals the necessary GetCapabilities() request of
the responsible building server, whereas the stored coordinate is utilised as a search parameter
when conducting a building query11. The MapBiquitous Client always and automatically sends
building queries to the directory service in shape of a XML-based DirectoryRequest, containing
the geographic limits of the currently displayed map section. Normally, the limits are provided as
minimum and maximum longitude as well as minimum and maximum latitude within WGS-84.
After receiving such a request, the directory server generates and initiates a database query,
resulting in a set of all buildings within the boundaries provided12. The set of buildings found is
forwarded to the requesting client as a XML-based DirectoryResponse.

The MapBiquitous directory service was implemented following the OGC reference implemen-
tation precisely. Nevertheless, only a subset of the requests and responses standardised by the
OGC was implemented, as not all request/response-pairs were required.

Client

On client side, data are stored within (instantiated13) classes. Within each object the different
attributes of possible data14 are stored as in-object attributes, each accessible via correspond-
ing methods. Each building, represented by a WFSServer object, contains a generic ArrayList
in order to store the different layers of the building in an WFSLayer object. These objects at
least store their identifier, their name and the layer type, such as ichnography, floor plan, POIs,
etc. Furthermore, two generic ArrayList objects are stored for information on rooms and access
points. Objects within these lists are of type BuildingPart (rooms), containing subobjects for
name, usage and other attributes, or of type WLANAccessPoint (access points), whose sub-
objects additionally contain the MAC address of the access point. Geographic vector data of
rooms and access points are stored in a subobject as an instance of GeoObject of the JavaGIS
API. Any instantiated WFSServer object is managed by the LocationModelAPI class. Access
methods (get and set) to the EFSServer and WFSLayer objects are implemented in this class.

Simplified, the client is divided into four distinct areas: A Locator module that provides position-
ing services, a Loader module that acquires data from servers, a Renderer module providing
visualisation of map and positioning data, and binding those three together, a central information
base providing all the current data. The simplified structure is depicted in Figure 1.3.2.

10 GML is an instantiated derivate of XML and is used to transmit location-dependent data. It is standardised within
OGC standards.

11 Especially when considering the last known GPS coordinate as ‘entrance’ to the building in question...
12 I.e. all buildings within the displayed map overlay will be found.
13 E.g. a building is stored as an instance of the WFSServer class.
14 E.g. the name or the URL to the responsible building server within WFSServer or identifier, name and typ of a layer

within WFSLayer.

1.3 The MapBiquitous Project 35

Figure 1.3.2: The simplified structure of MapBiquitous’ client [GKN12]

Building data are loaded and converted into client usable data by the Loader module. Indepen-
dent of where the request is sent to, either directory service or building server, several objects
are instantiated at runtime, generating representations of the Directory, GetCapabilities or a
GetFeatures requests, which are handled asynchronously as AsyncLOD1Task, AsyncLOD2Task
or AsyncLOD3Task runtime objects, whereas each possible level of detail (LOD 1, 2 or 3). An
AsyncLOD1Task represents a request to the directory service, generating a new WFSServer
object with the information provided by the directory service. A LOD deeper, an AsyncLOD2Task
represents the GetCapabilities request to a building server, generating new WFSLayer objects,
which are enlisted into the generic ArrayList of the generating WFSServer object. Additionally,
using a GetFeature request to the building server, an AsyncLOD2Task also loads a building’s
ichnography. Finally, an AsyncLOD3Task represents the GetFeature request to a building server,
loading the vector, meta and access point data into the WFSLayer objects, storing them into the
ArrayLists for rooms and access points. While LOD1 and LOD2 loading tasks are automatically
initiated by the client, the actual loading process of LOD3 is initiated by the system user as soon
as the user desires the GUI to display a storey not currently present in the client’s data. The in-
ternals of the Loader module as well as the schematic loading intents/notifications between the
Loader and Renderer modules are displayed in figures 1.3.3 to 1.3.5.

Figure 1.3.3: The basic architecture of MapBiquitous’ Loader module [Keß12]

Within the structure of the Android API, the actual command for the Loader module to retrieve
new data from either the directory service or a build server is issued by the Renderer mod-
ule. When the user is either moving the map overlay or explicitly wanting to display a different
storey, the Renderer module sends a message15 to the Loader module with an instruction of
15 An ‘Android Intent3’

36 Chapter 1 Preliminaries

Figure 1.3.4: The basic intents/notifications communicated between MapBiquitous’ Loader and
Renderer modules when loading LOD1 and LOD2 data [GKN12]

Figure 1.3.5: The basic intents/notifications communicated between MapBiquitous’ Loader and
Renderer modules when loading LOD3 data [GKN12]

what to load. After successfully loading the requested data, the Loader module will send a re-
sponse message to the Renderer module with the loaded data, initiating a re-rendering of the
displayed map overlay by the Renderer module. The basic message-driven communication of
the Renderer and Loader modules is depicted in Figure 1.3.6.

1.3.5 Navigation

According to [Keß12], MapBiquitous currently offers a proof of concept implementation of build-
ing-spanning navigation. Unfortunately, an actually working navigation could not be reproduced
for building-spanning routes during the creation of this thesis, while indoor-navigation could be
reproduced for a limited set of routes. Therefore, it shall be assumed that the concept might
work with a corresponding simple bugfix; nevertheless, neither the author of this thesis, nor
the author of the concomitantly written assignment paper [Bom12] were able to actually fix the
issue...

Anyway, the concept envisages the navigation to be a graph-solving problem utilizing Dijkstra’s
algorithm16. The graph at hand is built by connecting POIs considered being between the two
destinations. The POIs are considered the vertices of the graph, whereas the connections are
being considered the edges. The determination whether a POI is between the destinations is
conducted with help of symbolic coordinates, which primarily describe the distance between
the destinations. Only POIs considered in the vicinity17 of the probable route are introduced into
Dijkstra’s algorithm. For this to work, the symbolic coordinates includes semantic data as well

16 Refer to Theorem D.0.1 in the supplementary.
17 Using symbolic coordinates

1.3 The MapBiquitous Project 37

Figure 1.3.6: The basic message-driven communication MapBiquitous’ Renderer and Loader
modules [Keß12]

as location data. I.e. positions in symbolic coordinates include information on in which building
and on which storey the POI is located at. Further information on distances to other symbolic
coordinates as well as room data are included in WGS-84 standard coordinates. The latter are
used to interconnect symbolic coordinates when navigating between two buildings. The actual
outdoor navigation is then done by existing services, such as Google Maps. Using the semantic
data on buildings and storeys, the indoor navigation may be limited to the building at hand, while
maintaining a route within a storey, only using allowed waypoints, such as staircases or entries,
to change storeys or buildings.

38 Chapter 1 Preliminaries

2 CROWDSOURCING

‘You can’t rule the world in hiding. You’ve got to come out on the balcony some-
times and wave a tentacle.’

The Fourth Doctor (Thomas Stewart Baker)

40 Chapter 2 Crowdsourcing

CROWDSOURCING

Crowdsourcing presents itself to be a rather young concept in the field of computer science,
emerging in the late 1990s or early 2000s respectively. For example, the SETI@home project
was released to the public on 17 May 1999, making the concept of a distributed calculation
known to the public. As crowdsourcing is such a young concept, currently there exists no com-
monly agreed upon definition of what crowdsourcing actually is. There exists a vague consen-
sus on basic ideas, so intuitively most people agree on what the ought to believe crowdsourc-
ing is, but no agreeable formal definition has been accepted in general. Even though, crowd-
sourcing can be divided into two types: explicit crowdsourcing and implicit crowdsourcing; once
again, not clearly defining what both of them are. Nevertheless, this chapter shall introduce an
attempt at giving a definition of crowdsourcing as well as a taxonomy of crowdsourcing. Differ-
ent derivates shall be introduced and categorised according to the defined taxonomy. Finally, a
context to the similar term ‘social sensing’ shall be established.

2.1 ATTEMPT AT A DEFINITION

Closely following Howe, Estellés-Arolas and González-Ladrón-de-Guevara [EG12, How06] in con-
text of Quinn and Benderson [QB11] a common consensus on the definition of crowdsourcing
shall be established. Even though it is hard to find a consensus as definitions vary broadly, it
is imperative to agree on the common ground in order to build up an usable concept of crowd-
sourcing, especially a taxonomy of explicit crowdsourcing versus implicit crowdsourcing.

Comment

Sometimes the equivalent term ‘crowd sourcing’ can be found in sources. The author of this
thesis attempts to consequentially use ‘crowdsourcing’.

Currently, there is no generally accepted definition of crowdsourcing, only a large number of
widely varying definitions. In order to have a starting point, Definition 2.1.1 [EG12] shall be given,
which – according to self-made statements – Estellés-Arolas and González-Ladrón-de-Guevara
came up with after studying 40 definitions of crowdsourcing.

Definition 2.1.1 – Crowdsourcing

Crowdsourcing is a type of participative online activity in which an individual, an institution,
a non-profit organization, or company proposes to a group of individuals of varying knowl-
edge, heterogeneity, and number, via a flexible open call, the voluntary undertaking of a
task. The undertaking of the task, of variable complexity and modularity, and in which the
crowd should participate bringing their work, money, knowledge and/or experience, always
entails mutual benefit. The user will receive the satisfaction of a given type of need, be it
economic, social recognition, self-esteem, or the development of individual skills, while the
crowdsourcer will obtain and utilize to their advantage that what the user has brought to the
venture, whose form will depend on the type of activity undertaken.

Thus, Crowdsourcing is a distributed online or offline process involving a flexible group of con-
tributors (the ‘crowd’) and tasks to be (partially) completed by the contributors. The flexible
group of contributors is not well defined and is subject to dynamic changes in composition,
structure and taskability. Hence, crowdsourcing can be categorised as a distributed problem-
solving model with different algorithms. The entity making use of the crowd and providing the
task(s) is considered the ‘crowdsourcer’.

2.1 Attempt at a Definition 41

In most concepts – as is true for this thesis – the crowd is composed of humans which are at
the same time users of a system which itself is the crowdsourcer. Often, the solutions submit-
ted to the crowdsourcer are composed only of evaluable/analysable data, which are thereafter
owned by the crowdsourcer, making the crowd take the role of service providers.

Often, either the crowd as a total or individual contributors are compensated monetarily18, with
prizes19 or benefits20, or with recognition21. In other cases, there is no reward as the crowd
might not even know they are participating in the crowdsourcing process, e.g. Facebook Inc.
gathers information on persons who are not even members of the community by simply analysing
any data community members upload and putting them into relation; most of the Facebook
users are not aware that they contribute personal data of dégagé thirds, such as telephone or
address data, even though those thirds might give their consent to such contribution. The crowd-
sourcers generally benefit by large numbers of solutions/information being provided inexpen-
sively or even for free; this of course, only if considered a crowd large enough.

2.2 TAXONOMY OF CROWDSOURCING

Different derivates of crowdsourcing include, but are not limited to:

• Crowdvoting is the concept of a website gathering votes on a certain topic, e.g. which
picture provided by a community shall be awarded ‘picture of the year’.

• Crowdwisdom is the concept of collecting vast quantities of information, organising this
information and deducing a commonly agreeable recollection of the picture behind the
information. Wikipedia can be considered the example for crowdwisdom, as users con-
tribute new information, update existing information or delete information considered irrel-
evant or false. As the crowd has different backgrounds22, the commonly agreed recollec-
tion can be considered broad and well founded.

• Crowdfunding is the concept of collecting vast financial resources by involving a crowd out
of which each contributor only contributes a small monetary support. In general, but not
as a rule, the goal of the fund-raiser is clearly defined. Kickstarter may be the example for
crowdfunding as it is the biggest website for funding creative projects, having raised over
100 million USD. The resources contributed are only allocated to the crowdsourcer if the
defined goal is reached, otherwise the resources are returned to the crowd.

• Crowdpurchasing is the concept of leveraging the collective purchasing power of the crowd
in order to attain a reasonable discount or even the best price a dealer or manufacturer is
willing to offer in general. Letsbuyit.com is an example for this concept, where users are
presented with several levels of achievable discounts, depending on the size of the crowd
involved.

• Crowdworking is the concept of distributing parts of a dividable task to the crowd. In gen-
eral, but not as a rule, the tasks at hand are considered challenging for a computer, but
easy for a human. In 2006, the National Aeronautics and Space Agency asked people to
review images returned by the Stardust project on NASA’s website23 in order to find im-
ages with ‘interesting’ dirt.

18 Test subjects are often monetarily compensated in the field of pharmaceutical research.
19 Enquiries often offer the possibility of participating in a competition after submitting query-forms, promising equal

chances of winning prizes to all participants.
20 Dropbox Inc. offered users participating in the beta-test of their automated photo-upload function additional 500MB

of online-storage, which would remain even after the beta-test concluded, for each 500MB of photos uploaded.
http://forums.dropbox.com/topic.php?id=53104 – Accessed 1 June 2012

21 Search for Extra Terrestrial Intelligence at home (SETI@home) offers their users the possibility to download and print
out a certificate of appreciation for certain levels of credit points. http://setiathome.berkeley.edu/cert_print.
php – Accessed 1 June 2012

22 E.g. there might be veterinarians, truck-drivers, police force, etc. involved in maintaining an article about roadkills.
23 http://stardust.jpl.nasa.gov/home/index.html – Accessed 1 June 2012

42 Chapter 2 Crowdsourcing

http://forums.dropbox.com/topic.php?id=53104
http://setiathome.berkeley.edu/cert_print.php
http://setiathome.berkeley.edu/cert_print.php
http://stardust.jpl.nasa.gov/home/index.html

A more comprehensive look at some of the derivates can be found in chapter 2.

Independent of the derivates, there exist two concepts of crowdsourcing: explicit crowdsourc-
ing and implicit crowdsourcing. The definition of what ‘explicit’ and what ‘implicit’ are do vary,
making a general definition almost impossible. The two most commonly agreed distinguations
of the two are:

• Explicit crowdsourcing lets users cooperate and actively contribute to the crowdsourcing
process, while implicit crowdsourcing means that users solve a problem as a side effect of
something else they are doing, and

• Explicit crowdsourcing gives users awareness of the crowdsourcing process and lets them
decide when to participate in the crowd sourcing process, while implicit crowdsourcing
keeps the crowdsourcing process transparent to the users, requiring no user interaction at
all.

As for the MapBiquitous project and the creation of this thesis and G. Bombach’s assignment
paper [Bom12], both distinguation concepts shall be united, maintaining the agreed concepts
of implicit crowdsourcing. Clearly, both distinguations follow independent differentiators: the
immediacy of the crowdsourcing process on the one hand and the crowd’s awareness of the
crowdsourcing process on the other hand. As both differentiators are orthogonal to each other,
the following taxonomy shall be proposed:

Definition 2.2.1 – Taxonomy of Crowdsourcing

There exist four types of crowdsourcing which can be placed within a taxonomy build on
awareness and immediacy. Awareness is the concept of the crowd being aware of the crowd-
sourcing process taking place, whereas immediacy is the concept of acquiring required infor-
mation either directly (strong correlation between collected data and derived information)
or indirectly (loose correlation between collected data and derived/computed information).
Hence, there are four types of crowdsourcing:
• Aware Direct Crowdsourcing (ADC)

Aware crowdsourcing directly correlated to the data required.
• Unaware Direct Crowdsourcing (UDC)

Unaware crowdsourcing directly correlated to the data required,.
• Aware Indirect Crowdsourcing (AIC)

Aware crowdsourcing loosely correlated to the data required.
• Unaware Indirect Crowdsourcing (UIC)

Unaware crowdsourcing loosely correlated to the data required.
The following conventions shall be valid: As aware direct crowdsourcing is explicit in aware-
ness as well as immediacy, this type of crowdsourcing shall be labelled ‘explicit crowdsourc-
ing’ within this thesis, whereas unaware indirect crowdsourcing is implicit in awareness as
well as immediacy, so it shall be labelled ‘implicit crowdsourcing’ within this thesis.

The entire taxonomy as defined is depicted in Figure 2.2.2. Above introduced abbreviations
(ADC, UDC, AIC, UIC) originate in the differentiators explicitness or implicitness, for which the
first letter represents the awareness differentiator, and the second letter represents the immedi-
acy differentiator.

Independent of the distinguation between implicit and explicit crowdsourcing, commonly agreed
upon (and hence often used), implicit crowdsourcing can take two forms. These forms of im-
plicit crowdsourcing cannot clearly be mapped on either differentiator, but shall be mentioned
here anyway, as there exists an obvious tendency towards the awareness differentiator, so –
even though not fitting exactly – they can be mapped accordingly.

• Standalone implicit crowdsourcing allows the crowd to contribute as a side effect of the
task they are actually solving or of the usage of the crowdsourced system, whereas

2.2 Taxonomy of Crowdsourcing 43

Figure 2.2.2: The taxonomy of crowdsourcing as to be used within this thesis

44 Chapter 2 Crowdsourcing

• Piggyback implicit crowdsourcing takes information deducted from the crowd’s general
feedback and acquires data from them24.

The tendency to the context of awareness is obvious, but it is not clear enough to justify nam-
ing unaware direct crowdsourcing ‘standalone crowdsourcing’ and unaware indirect crowd-
sourcing ‘piggyback crowdsourcing’ within the taxonomy.

Inexpediently, the four types of crowdsourcing may not always be clearly distinguished, making
the crowdsourcing process present itself as a hybrid, which shall simply be called ‘hybrid crowd-
sourcing’.

Corollary 2.2.3 – Refinement of the crowdsourcing taxonomy

The taxonomy of crowdsourcing implicitly includes hybrids and hence may be refine by adding
information upon the awareness and immediacy:
• Unaware Crowdsourcing

The hybrid of UDC and UIC.
• Aware Crowdsourcing

The hybrid of ADC and ACI.
• Direct Crowdsourcing

The hybrid of UDC and ADC.
• Indirect Crowdsourcing

The hybrid of UIC and AID.
• (Entirely) Hybrid Crowdsourcing

The hybrid of all four types of (non-hybrid) crowdsourcing.

The refined taxonomy enriched by hybrids is depicted in Figure 2.2.4.

Corollary 2.2.5 – Further refinement of the crowdsourcing taxonomy

The refined taxonomy of crowdsourcing includes further hybrids beyond the hybrids intro-
duced in Corollary 2.2.2 (‘mostly unaware slightly indirect hybrid crowdsourcing’, ‘slightly
unaware mostly indirect hybrid crowdsourcing’, etc.).

It shall be noted, that data protection issues (refer to section 5.1) may arise. Hence, users should
be asked whether they wish to contribute collected data, or not. This would automatically make
the entire crowdsourcing process aware to the crowd, so the concept of awareness should be
refined.

Definition 2.2.6 – Crowd Awareness

Awareness within a crowdsourcing process arises iff the crowd is regularly confronted with
the fact that crowdsourcing is taking place.

In the sense of Definition 2.2.4, the crowd is unaware of the crowdsourcing process if they are
asked for permission once at the beginning of the crowdsourcing process. This is very impor-
tant when considering that humans tend to not read the fine-print when using software, etc.

With the so defined taxonomy, the above mentioned derivates can be exemplarily categorised
into the taxonomy types ADC (explicit crowd∼) and UIC (implicit crowd∼), without limiting to
either of them.
24 Google stores a cookie on users’ computer while surfing to Google’s search engine. When later surfing to affiliated

partner websites, the cookie can be used to trace users and deduct behavioural patterns, which in turn can be used
to optimise advertisement cashback.

2.2 Taxonomy of Crowdsourcing 45

Figure 2.2.4: The taxonomy of crowdsourcing refined with hybrids

46 Chapter 2 Crowdsourcing

• Crowdvoting:
– Explicit crowdvoting: Being presented a selection of choices, users pick their favourite.

– The crowdsourcer is the designer of the selection trying to grasp the general opin-
ion of a set of users, whereas the crowd is the set of users wanting to know, what
thoughts others have on the topic in question.

– Implicit crowdvoting: Analysing the sales of products, a shop can create a ranking
of their products. – The crowdsourcer is the shop wanting to sell high quantities of
favourable products, whereas the crowd is the total set of customers simply buying
the products.

• Crowdwisdom:
– Explicit crowdwisdom25: In light of the annular solar eclipse that took place on 20

May 201226, astronomers all over Japan observed the border of the annulus in order
to find the exact27 line of annular observability. With the information collected the ex-
act circumference of the sun at that time could be calculated. – The crowdsourcers
were the scientific community of Japan wanting to determine the exact circumfer-
ence of the sun at that time, whereas the crowd was the set of all observers sending
in information on annular observability.

– Implicit crowdwisdom: Hardware manufacturer often offer a cashback system, award-
ing end-users with financial benefits for returned hardware at the end of the hard-
ware’s lifecycle. – This is of course an example for explicit crowdsourcing when con-
sidering only the cashback, but considering the manufacturer as crowdsourcer want-
ing to acquire knowledge upon hardware quality or durability, the customers sending
in their hardware can be considered the crowd implicitly providing the knowledge on
quality or durability.

• Crowdfunding:
– Explicit crowdfunding: A start-up wanting to start production of a product may call

for supporters, offering them a reduced special price when the product is finally avail-
able. – The crowdsourcer is the start-up requiring funding support, whereas the cus-
tomers are the crowd providing the funds, expecting the reduced price as an award.

– Implicit crowdfunding: Users regularly visit a website with advertisements placed on
it. – The crowdsourcer (explicit and implicit) is the website’s owner receiving money
for each advertisement displayed and/or clicked, whereas the explicit crowd is the
set of users clicking the advertisements (creating payable click impressions), and the
implicit crowd is the set of users visiting the website and having the advertisement
only displayed in their browser (creating payable view impressions).

• Crowdpurchasing:
– Explicit crowdpurchasing: A group of users may form an aggregation of purchasers

in order to achieve the optimal price from a manufacturer. – The crowdsourcer is the
manufacturer demanding to sell large quantities of their products, whereas the crowd
is the aggregation of purchasers wanting to reach the price minimum.

– Implicit crowdpurchasing: A supermarket sells articles at a fixed price, but buys them
at varying prices. – The crowdsourcer is the supermarket willing to win the lowest
purchase price, the crowd is the set of all customers buying the article from the su-
permarket. Depending on sells, the order amount varies; hence a purchase price fluc-
tuation may occur. The supermarket may support this by advertising the article in or-
der to push sells.

• Crowdworking:
– Explicit crowdworking: An academic work is put to public discussion. – The crowd-

sourcer is the author of the work asking for feedback, whereas the crowd is the set
of all readers reading and commenting on the work.

– Implicit crowdworking: People are invited to test a new hiking course for free. – The
crowdsourcer is the owner of the hiking course, whereas the explicit crowd is the set
of people using the hiking course for free, while the implicit crowd is the same set of
people compacting the grounds and foundations of the newly created hiking course.

Once again, it shall be mentioned that a more comprehensive look at some of the derivates can
be found in chapter 2.
25 Information on this example provided by an article of the NHK World News on 25 May 2012.
26 UTC; 21 May 2012 in Asian time; eclipse 58 of Saros-cycle 128
27 In some areas in Japan, observation units were set up every 180 metres.

2.2 Taxonomy of Crowdsourcing 47

2.3 SOCIAL SENSING

An approach at gathering information focussed on humans and their behaviour is ‘social sens-
ing’. The sole sources of information gathered are the human being and its surroundings. Hu-
mans themselves as monitors [ASS+10] gathering strongly correlated measurands as well as
the humans’ social interactions as monitors gathering loosely correlated measurands [MCLP10,
Tel07] allow information retrieval in a social context. The approach is well distributed and crowd-
based, so it is fair to assume it to be at least a derivate of crowdsourcing, which – as a reminder
– is not limited to only humans.

Looking at the was social sensing is described to work in general (e.g. in [ASS+10, MCLP10,
Tel07]), a striking similarity to crowdsourcing can be observed. A party is interested in infor-
mation, which shall be provided by observed (and distributed) humans. This model is an exact
match to the crowdfunder/crowd-relation of crowdsourcing (refer to Figure 2.3.1).

Figure 2.3.1: Comparison of social sensing and crowdsourcing; striking similarity

Further, the same taxonomy as introduced in Definition 2.2.1 can be applied accordingly. On the
one hand, when social sensing takes place, it is possible to have the humans either be aware of
the social sensing, or not be aware of it. Hence, following Definition 2.2.1, social sensing should
also be able to be typified along the awareness differentiator, leading to aware and unaware so-
cial sensing. On the other hand, data acquired by social sensing can be strongly correlated to
the information required28, but also weakly correlated to the information required29. Hence, also
the immediacy differentiator as introduced in Definition 2.2.1 can be applied, leading to direct
and indirect social sensing.

Taking all the similarities into consideration, it should be fair to proclaim that social sensing is in
fact crowdsourcing, but limited to humans and data/information strongly correlated to humans
and their social surrounding.

Comment

For the remainder of this thesis, it shall be assumed that the made proclamation is valid.
Nevertheless, limiting the scope to social sensing would be unjust; hence, the broader crowd-
sourcing will be used in chapter 6.

28 E.g. the required information could be (in absolute numbers) an answer to the question, ‘How many female friends
does a man aged 30 have in average?’

29 E.g. the required information could be an answer to the question, ‘Does a larger circle of friends reduce the risk of
allergic coryza?’

48 Chapter 2 Crowdsourcing

3 EXISTING CROWDSOURCING
CONCEPTS

‘Don’t blink. Don’t even blink! Blink and you are dead! They are fast, faster than
you could believe. Don’t turn your back, don’t look away, and don’t blink. Good luck!’

The Tenth Doctor (David Tennant) in ‘Blink’ (BBC, 2007)

50 Chapter 3 Existing Crowdsourcing Concepts

EXISTING CROWDSOURCING CONCEPTS

Comment

The contents of this chapter were contributed by Gerd Bombach and are not original work
of the author of this thesis, who only contributed the translation from German into English.
These contents focus on crowdsourcing applications and concepts, which are imperative to
know as they describe the motivation for research in this field. On a first glimpse, they may
seem to not be very related to the contents of this thesis; however, it is important to have a
well founded motivation for something (in this case the conceiving of a crowdsourcing archi-
tecture) rather than ‘just doing it’. Therefore, this chapter shall help identify the motivation.

The concept of utilising crowdsourcing to collect and enhance map data has been in use by
several project for a few years. The most prominent example can be considered to be Open-
StreetMap which has been developed at the College University London. Utilising a steadily
growing crowd of supporters, especially in well developed areas map data of high quality could
be aggregated within a very short time. According to [NZZ11], the aggregated data provides bet-
ter information than comparable solutions of commercial tenderers. However, this is exactly the
problem with this approach as the quality of the map data is proportional to the population den-
sity and the development state of the area in question. While highly developed countries exhibit
nearly perfect map data, poorly developed areas manifest large uncovered mapping areas.

Especially the field of map data generation and correction for indoor applications is currently
under intensive investigation. Currently, the main problem is an exact, reliable and cheap posi-
tioning technology for these indoor applications. Further reference on the problems is provided
in [Gru12].

Nevertheless, also the creation and enhancement of map data utilising the capabilities of the
crowd requires further investigation, even though several applications of this field have emerged
into practical use.

The remainder of this chapter shall introduce some scientific ansatzes, followed by three exist-
ing commercial ansatzes that create or enhance their map data by crowdsourcing.

3.1 SCIENTIFIC ANSATZES

3.1.1 Geowiki: Creation of Outdoor Maps utilising Crowdsourcing

In edition 11/2011 of ‘Computer’ [Mas11] different geowikis are presented. The most prominent
example once again is OpenStreetMap. As a minor project, designed to fulfil the demand of
cyclists, Cyclopath is introduced. The results of the presentation clearly show up that commer-
cial ansatzes are only interested in data able to generate a profit in the future. Map data for cy-
clists do not count in this category in the moment. Even further, cyclists require more exact and
highly adaptable map data for their navigation, which is only possible by unprofitable expenses
for centrally organised map data providers. Utilising crowdsourcing, this effort can be distributed
to several motivated supporters.

Another factor interceding for crowdsourcing are times of crisis. While centralised instances of-
ten collapse in crises, the crowd may still provide map data. In the aftermath of the earthquake
in Haiti in 2009, maps based on topical satellite images were created within a very short time.
These maps were essential for rescue forces in order to advance into the devastated areas.

3.1 Scientific Ansatzes 51

Additionally, it was possible to visualise the extend of damages by comparing before and after
images. [All12]

In [Mas11] also the problems with visualising the ascertained data is described. A solution would
be – following OpenStreetMap’s ansatz – to utilise a domain specific view. OpenCycleMap dis-
plays information for cyclists, while ÖpnvKarte emphasises information for the local public trans-
port30. However, both views share the same map data base.

An evaluation in [PMT10] on the bicycle route requests via maps amended by the crowd con-
cludes that calculated routes could be shortened by an average of 1 km after the crowd had
added shortcuts and catenations of roads via parking lots.

In summary, generation and correction of maps utilising a large crowd has superior quantity and
quality compared to non-crowdsourced map data.

3.1.2 Motivation of the Crowd

An important question to answer with respect to crowdsourcing is about how to motivate peo-
ple to participate. Different ansatzes were already discussed in chapter 2. [PMT10] has con-
ducted a field study with 1500 users of Cyclopath and identified an elect core of a few users
actively contributing, while the majority of users limit their usage of the system to passive func-
tions. They then analysed ansatzes to motivate more users to become active participants. There-
fore, within the field test users had to amend map data, in particular whether intersections were
actually intersections, or bridges spanning over roads. The researchers concluded that visual
highlighting of areas with limited data encouraged users to actively participate; with respect to
the field study, intersections with few data were highlighted. They even asserted that users
once they had started to contribute data would actively continue as long as visual highlights
were given – some users even contributed for areas that were not highlighted.

However, another hypothesis could not be verified: The researchers assumed that users would
contribute substantially more for areas they knew rather than unknown areas. The result show,
only by visual highlighting users could be animated to (also) contribute to areas they knew.

In summary, [PMT10] concluded that visual highlighting of demanded data is imperative for ac-
tive participation of the crowd. Monetary stimuli are not necessarily required.

[KSV11] asserted similar results from a survey among the participants of Amazon’s ‘Mechan-
ical Turk’. The mechanical turk is a crowdsourcing marketplace where crowdfunders can offer
tasks that can be worked on by the users of the platform. Fields of work covered inter alia range
from image recognition, language transcription, product description to identification of perform-
ers of music. Mechanical turk focuses on monetary reward; however, for some type of tasks
these reward were as minimal as a few cents. Therefore, [KSV11] analyses why certain tasks
are favoured over others. A model including intrinsic31 and extrinsic32 motivation was devel-
oped. A corresponding survey concluded that the monetary compensation is prime motivation
for the survey participants. However, intrinsic motivation follows closely.

Summarising, [KSV11] concludes that monetary compensation is essential if crowdsourcing par-
ticipants are not able personally benefit intrinsically from their participation. Additionally, tasks
must be designed to not be monotonic, allow the participants to recognise the value of their
contribution and allow a certain degree of freedom in the processing of the task.

30 ‘ÖPNV’ is a German acronym for ‘Öffentlicher Personennahverkehr’, which literarily translates to ‘Public Person Local
Transport’.

31 E.g. variety of the tasks, identification with the task, feedback after completing a task, etc.
32 E.g. monetary compensation, improvement of skills, unlocking of confined tasks, etc.

52 Chapter 3 Existing Crowdsourcing Concepts

3.1.3 GSM Measurements as an unaware indirect Crowdsourcing Method

Ascertainment of GSM cell site locations and their signal strengths at selected positions may
improve positioning within a building significantly. For this, GSM information could be automat-
ically ascertained by users of an indoor navigation application while they are using the system.
This can be considered an unaware indirect crowdsourcing (UIC) derivate. Determining a po-
sition on basis of several different sources of information may help to improve the positioning
significantly by applying a particle filter.

Engaging GSM-based positioning, [OV05] concluded an advantage of GSM by broader availabil-
ity of the infrastructure. Theoretically, anywhere GSM cell site locations are available, position-
ing should be possible without having have to deploy additional hardware. The results are very
promising and actually prove good positioning based on GSM information. However, this ap-
proach requires availability of information of several GSM cell site locations in range – i.e. tri-
angulation must be possible. And this is the crux of the matter, as most of the GSM hardware
built into smartphones does not allow access to GSM information other than of the cell site lo-
cation the device is currently connected to. This is especially a problem for smartphones operat-
ing under the Android operating system.

3.2 COMMERCIAL ANSATZES

3.2.1 Google Indoor Maps

With ‘Indoor Maps’ Google introduced an extension to their map service at the end of 2011.
Google determines a person’s position by triangulating them with WLAN access point infor-
mation. For this to work, building ichnographies and positions of access points within the build
must be available beforehand. In the early phase of provision, Google themselves supplied these
information for a few large malls and airports in the United States of America. However, in April
2012 Google introduced the crowdsourcing app ‘Google Maps Floor Plan Marker’33. Using this
app, users of the indoor navigation service are supposed to contribute map data on their own.
For this, users need to select their building of choice beforehand using a special website34 and
upload an ichnography, e.g. by scanning an evacuation map, etc. Afterwards, the ichnography
must be placed and rotated within a satellite image until a perfect match is reached. The so
provided ichnography is available in the Android app afterwards. The user is then supposed to
stride up and down the building following a calculated path, covering all areas of the building
while ascertaining WLAN access point information.

Summarising, Google Indoor Maps is exemplar for aware direct crowdsourcing (ADC). Currently35

indoor maps exist for selected building in France, the United Kingdom, Switzerland, Japan and
the United States of America36. In Germany, one can upload ichnographies; however, neither
can the Android app be downloaded nor can one use the app37.

33 https://play.google.com/store/apps/details?id=com.google.android.apps.insight.surveyor
– Accessed 18 October 2012

34 https://maps.google.com/help/maps/floorplans/ – Accessed 18 October 2012
35 18 October 2012
36 A comprehensive list is available at http://goo.gl/ZfNJO – Accessed 18 October 2012
37 Assuming one obtains the app from ‘somewhere’.

3.2 Commercial Ansatzes 53

https://play.google.com/store/apps/details?id=com.google.android.apps.insight.surveyor
https://maps.google.com/help/maps/floorplans/
http://goo.gl/ZfNJO

3.2.2 Unaware Crowdsourcing: Traffic Congestion Prediction

By now, the concept of floating car data (FCD) is being used by many companies as it is several
years old, well researched and established. Serial-production sees FCD present since 1999.

In short FCD amends the cars with modules collecting data while the cars move in the traffic.
Mostly, the data is more or less directly ascertained from the cars GPS-hardware. The data is
then (pre)processed and transmitted to a central processing station via GSM or UMTS connec-
tion. As soon as a certain critical mass is reached, real-time traffic monitoring and congestion
prediction becomes possible. This information is then sent back to the FCD modules via the
same internet connection used earlier. The cars’ onboard navigation units can then calculate al-
ternative routes avoiding the existing and/or possible congestions.

As [Gro] describes, BMW has extended this concept by not only ascertaining position and speed
of the vehicles, but by also ascertaining further sensor data. Exemplary, data from ABS38, ESC39

and temperature sensors can allow estimations on the possibility of black ice. These additional
data are sent to the FCD centre together with the other data. In return, the FCD centre is able
to warn other vehicle following on the same path or operating in the vicinity. As these data sent
are ascertained by the vehicles anyway, the extension of the FCD system to use these data is
very cost saving. The entire ascertainment is a background process, totally unaware to the oper-
ator of the vehicle. At most, the owner/operator of the vehicle is asked for permission to ascer-
tain and transmit these data when powering up the FCD system for the first time.

In [STW02] the possibilities to build a traffic information system based only on FCD data are dis-
cussed. Several hundred vehicles of a taxi business were equipped with FCD modules, trans-
mitting the vehicles’ positions once per minute. [STW02] concluded that the ascertained data
was sufficient to reproduce the entire city’s traffic volume in real-time and allow dynamically op-
timised routing.

Currently, similar concepts are intensively in use. However, since smartphones are available to
a broad mass of consumers, the availability and density of data ascertainers has grown large.
Google, Apple as well as TomTom in cooperation with Vodafone anonymously ascertain and pro-
cess the positions and speeds of all vehicles/persons utilising their products40. Explicit naviga-
tional use of the products is not even required, as the products constantly ascertain these data
in the background and transmit them to the corresponding servers. In this spirit, it is sufficient
to turn on a product and carry it with oneself in order to contribute to the (crowdsourced) data
ascertainment.

3.3 CONCLUSION

In summary, one can perceive a clear importance of crowdsourcing in context of map data to-
day. Many well working applications are available that would not function without the contribut-
ing crowd. By now, also the users are used to investing work into a service that does not seem
to immediately benefit them. By dividing large tasks into smaller micro-tasks, projects can be
established that commercial centralised products can not. The best example for this is Wikipedia.
Further demand of research clearly exists, not limited to the field of computer science.

38 Anti-lock Breaking System
39 Electronic Stability Control
40 The wording is intentionally ‘product’, as the vendors provide own and licensed hardware as well as own and licensed

software.

54 Chapter 3 Existing Crowdsourcing Concepts

4 RELATED WORK

‘Work is the refuge of people who have nothing better to do.’

Oscar Wilde

56 Chapter 4 Related Work

RELATED WORK

For any academic work, especially for a thesis, it is very important to narrow down the scope
by pointing out related work. This proves rather simple for any crowdsourcing project itself, as
chapter 2 demonstrates. Unfortunately, examination is limited to the scope of the crowdsourc-
ing projects and their general functionality, as it seems to be impossible to find current informa-
tion on the actual implementation as soon as crowdsourced data reaches the crowdfunder.

This is especially true for commercial products, e.g. Google’s ‘Street View’. Users of Street
View are able to contribute user placed information tokens, such as a panorama image or restau-
rant critique; basically this can be considered crowdsourcing of (crowd) knowledge. However, it
is impossible to gather information upon how the data is stored once it reaches Google’s servers41.
Due to the competing products of rival companies, information is treated very secretive. The
best data available from Google is a guide42 for their ‘Google Earth Server’, an Apache httpd
derivate, which delivers map data to accessing clients. However, it is not described how Google
themselves use this server, especially in context of crowdsourced amendment/correction of
data.

In a strange sense, the same problems also apply for ‘open’ projects, such as OpenStreetMaps,
which has a rather comprehensive Wiki43; however, no information on the server infrastructure
is available. There also exists a list44 of indoor navigation projects using OpenStreetMaps as a
basis, but they all share the lack of server infrastructure information. The list includes, but is not
limited to:

• BA Indoor Routing Web-App by Andreas Hubel
• The indoorOSM project from OSM data
• FootPath by RWTH Aachen
• The Leadme project by Richard Atterer

Another prominent representative of an ‘open’ project with comprehensive information on the
application concept, however not on the server architecture, is OpenRoomMap45. It is devel-
oped and used for extensive research at the University of Cambridge; therefore, an extensive
list of publications exists46. However, to best knowledge of the author of this thesis, none of
the listed 199 publications focuses on the server architecture of OpenRoomMap.

Due to the difficulties mentioned above, this important section of related work culminates in the
realisation that there is no current related work presentable for the server side of crowdsourc-
ing. The more it is important to present a good concept (refer to chapter 6) and actually share
the information, as done within this thesis. However, there exists one rather old crowdsourcing
project that actually shares information: the Berkeley Open Infrastructure for Network Comput-
ing (BOINC).

41 The author of this thesis isn’t even sure whether Google uses several servers (might be a fair assumption), or only
one server.

42 To be found at http://www.google.com/enterprise/earthmaps/earth_server.html – Accessed 17 October 2012
43 It is available at http://wiki.openstreetmap.org/wiki/Main_Page – Accessed 17 October 2012
44 The list is to be found at http://wiki.openstreetmap.org/wiki/Indoor_Mapping – Accessed 17 October 2012
45 http://www.cl.cam.ac.uk/research/dtg/openroommap/ – Accessed 18 October 2012
46 Available at http://www.cl.cam.ac.uk/research/dtg/www/publications/ – Accessed 18 October 2012

57

http://www.google.com/enterprise/earthmaps/earth_server.html
http://wiki.openstreetmap.org/wiki/Main_Page
http://wiki.openstreetmap.org/wiki/Indoor_Mapping
http://www.cl.cam.ac.uk/research/dtg/openroommap/
http://www.cl.cam.ac.uk/research/dtg/www/publications/

4.1 BOINC – BERKELEY OPEN INFRASTRUCTURE FOR NETWORK
COMPUTING

The Berkeley Open Infrastructure for Network Computing (BOINC) project started in Febru-
ary 2002 and its first usable version was released 10 April 2002. After a phase of crowdknowl-
ege – i.e. open programming – the project was deployed under the GNU General Public License
on 18 November 2003. However, actual operations did not commence until 9 June 2004 when
Predictor@home47, the first project to use the BOINC architecture, was launched. The basic
idea of the BOINC project is to procure a reliable platform for distributed computing projects by
means of the BOINC architecture; hence, the project can be considered a PaaS48-derivate. This
PaaS-aspect is what makes BOINC interesting for this thesis and justifies its status as related
work, as the goal of the thesis is to develop a reliable architecture for crowdsourcing. Several
crowdfunders – i.e. the maintainers of the buildings – want to crowdsource information ascer-
tainment. What type of information does not matter, as different crowdfunders may be inter-
ested in different information. Comparing this to the BOINC architecture, a striking similarity
is obvious, as different crowdfunders – i.e. the computing projects – want to crowdsource in-
formation processing; what kind of information does not matter, as the different projects are
interested in different types of processing. Hence, basic concepts and ideas of the BOINC archi-
tecture should be applicable to the concept to be developed in this thesis. This is especially true
for the HTTP-based communication as well as the server components.

Basically, the BOINC architecture separates crowdsourcers and crowdfunders from each other,
as to be expected from any crowdsourcing architecture. More into detail, the separation subdi-
vides into several components which shall be briefly introduced.

• Participant’s side (client-side) The participant’s side of the BOINC architecture roughly
follows the MVC49-pattern.

– Core Client
A command line programme running as a background-process on the participant’s
computer, monitoring and controlling all installed project applications pursuant to the
participant’s specifications. It buffers work units and handles communication with the
schedulers and data servers of the installed projects.
The core client does not conduct any crowdsourcing computation, i.e. it is not part of
the distributed computation. It can be considered the controller of the client-side.
This component does not need to be project-individual as its operation does not de-
pend on the project installed on the client.

– BOINC Manager
A graphical interface for the configuration and monitoring of the core client. It relies
on the core client as controller; hence, it can be considered a view.
This component does not need to be project-individual as its operation does not de-
pend on the projects installed on the client.

– Boinc Command Line Interface
A command line interface for the configuration and monitoring of the core client. It
relies on the core client as controller; hence, it can be considered a view.
This component does not need to be project-individual as its operation does not de-
pend on the projects installed on the client.

– Project Applications
The actual application logic of each installed project. They are downloaded and de-
ployed into the computer’s processing queue by the core client and compute the
work units provided by the core client. Project applications are monitored by the core
client via shared memory access and can therefore be considered the models.
This component has to be project-individual as it facilitates the project operation on
the client.

47 Predictor@home was a distributed computing project at the University of Michigan, established by the Scripps Re-
search Institute in order to predict protein structures from protein sequences and to test, evaluate and enhance
algorithms for structure-prediction of known and unknown proteins.

48 Platform-as-a-Service
49 The Model-View-Controller is a widely used programming design-pattern.

58 Chapter 4 Related Work

• Server-side

Each project must implement its own server infrastructure based on a web server, PHP,
Perl or ASP as script language, and a MySQL database. The server components must be
deployed at least once, but multiplication for redundancy or load balancing is explicitly en-
couraged.

– Scheduler
A CGI50-programme on the project’s web server. It assigns work units to the clients
redundantly, i.e. several clients are assigned the same work unit. After computation
of the work units has completed the scheduler has to be provided with a success or
failure information, but not the actual results. All activities are logged into the local
MySQL database.
This component does not need to be project-individual as its operation does not de-
pend on the project running it.

– Data Server
This is a simple web server only supporting HTTP communication. All clients are ex-
pected to retrieve their assigned work units from this server and to upload their re-
sults to this server.
This component does not need to be project-individual as its operation does not de-
pend on the project running it.

– MySQL Database
This component facilitates storage of status and processing information. It does not
store the work units or results; they are stored in the file system directly.
This component does not need to be project-individual as its operation does not de-
pend on the project running it.

– Validator
A project-specific programme that revises and validates the clients’ results. In gen-
eral, validation is enforced by comparison of the redundant results of several clients
for the same work unit; hence, the validator does not need to compute the work
units itself. Validated results are pushed to the assimilator.
This component has to be project-individual as its operation depends on the project
running it.

– Assimilator
A project-specific programme accepting only validated work unit results. It dresses
the result data for further scientific or academic analysis. Often, these results are
stored into another MySQL database.
This component has to be project-individual as its operation depends on the project
running it.

– File Deleter
After assimilation of the result the corresponding work units and results are deleted
by this component in order to free then unnecessarily occupied memory.
This component does not need to be project-individual as its operation does not de-
pend on the project running it.

– Transitioner
Implementing a virtual multi-core pipeline, this component monitors the distributed
computation. It receives work unit states from the scheduler by sharing access to the
same MySQL database and regularly checking it. As soon as sufficient results have
been uploaded to the data server, the transitioner activates the validator for further
processing of the results.
This component does not need to be project-individual as its operation does not de-
pend on the project running it.

For communication the components use the standard hypertext transport protocol (HTTP). An
extension to HTTP is the data server protocol, a XML-derivate-based packet-oriented communi-
cation, used for work-unit-result uploads. The data server protocol is designed to prevent denial
of service attacks on the data servers. Independent of the protocol used, all communication
is bound to port 80, allowing BOINC communication through common firewall configurations.

4.1 BOINC – Berkeley Open Infrastructure for Network Computing 59

Figure 4.1.1: Basic communication within the BOINC architecture. (c© University of California,
Berkeley – published under the GNU Free Document License 1.2)

According to the BOINC project, communication follows51: With the corresponding original de-
scription from the BOINC project:

• ‘The client downloads the page from project’s master URL. From XML tags embedded in
this page, it obtains a list of domain names of schedulers.’

• ‘The client exchanges request and reply messages with a scheduling server. The reply
message contains, among other things, descriptions of work to be performed, and lists
of URLs of the input and output files of that work.’

• ‘The client downloads files (application programs and data files) from one or more down-
load data servers. This uses standard HTTP GET requests, perhaps with Range commands
to resume incomplete transfers.’

• ‘After the computation is complete, the client uploads the result files. This uses a BOINC-
specific protocol that protects against DOS attacks on data servers.’

• ‘The client then contacts a scheduling server again, reporting the completed work and re-
questing more work.’

The internals of the data server protocol shall be omitted here as they can be found in the BOINC
Wiki52.

An exemplary architecture with clients, servers and communication paths is depicted in Figure 4.1.2.

50 Common Gateway Interface is a standard for data exchange between a web server and other programmes running
on the same machine.

51 http://boinc.berkeley.edu/trac/wiki/CommIntro – Accessed 7 October 2012
52 http://boinc.berkeley.edu/trac/wiki/FileUpload – Accessed 7 October 2012

60 Chapter 4 Related Work

http://boinc.berkeley.edu/trac/wiki/CommIntro
http://boinc.berkeley.edu/trac/wiki/FileUpload

Figure 4.1.2: An example for a project distribution with the BOINC architecture.

4.1 BOINC – Berkeley Open Infrastructure for Network Computing 61

62 Chapter 4 Related Work

PART II PROCEEDINGS

Contents of this Part
5 Requirements Review 67

5.1 Data Protection Issues . 70
5.1.1 Legal Boundaries in the Federal Republic of Germany 71
5.1.2 Collectible Data . 73
5.1.3 Protectable Data . 73

5.2 Data required by MapBiquitous . 74
5.2.1 MapBiquitous: Data Collection, Storage, Processing and Protection 74

5.3 Conclusion . 75

6 Crowdsourced Optimisation Concept 79
6.1 Crowdsourcing Client . 82
6.2 Crowdfunding Server . 85

6.2.1 Anonymity and Identification of Clients . 85
6.2.2 Safety from Interception through Encryption . 89
6.2.3 Unaltered Directory Server and Modified Building Server 90
6.2.4 Indoor Navigation Server Access Network Entity 92
6.2.5 Access Control Lists, Privilege Pointers, Resigning and Re-encryption 93
6.2.6 Database Structure: Building Server amendment and new INSANE 97
6.2.7 Optimisation towards Scalability: Distributed Hash Tables with DNS 101
6.2.8 Summary . 105

6.3 Interplay of Client and Server . 105
6.3.1 Extensible MapBiquitous Crowdsourcing Communication Protocol 108

6.4 Conclusion . 110

7 Proof of Concept within MapBiquitous 111
7.1 Problems . 113
7.2 Deviations from the Concept . 115
7.3 The Implementation . 116
7.4 Conclusion . 118

8 Evaluation 121
8.1 Conformity of the Implementation to the Design Goals 123
8.2 Comparison of old and new Communication . 126

8.2.1 Comparison of the WFS requests . 126
8.2.2 Comparison of WLAN-Fingerprinting Communication 129
8.2.3 Conclusion for Fingerprinting and Positioning 133

8.3 Resource Use and Communication Load compared to ‘Default Websites’ 134
8.3.1 Exemplary Recommendations for Deployment 135

8.4 Conclusion . 137

9 Conclusion and Future Work 139
9.1 Conclusion . 141
9.2 Future Work . 141

Figures within this Part
5.3.1 Relations of the Design Goals . 76
6.0.2 Crowdsourced MapBiquitous . 81
6.0.3 Proposed Modifications to MapBiquitous’ Architecture (simplified) 83
6.0.4 Communication Paths in the proposed Modifications to MapBiquitous 84
6.2.1 Proposed Modifications to MapBiquitous’ Architecture 86
6.2.7 Modifications to the Building Server . 90
6.2.8 New Component: The INSANE . 92

6.2.11 ACL on Building Server . 94
6.2.12 Capabilities on Client . 94
6.2.13 Interplay of ACL and Capabilities . 95
6.2.14 MapBiquitous’ Crowdsourcing Trust Path . 96
6.2.15 MapBiquitous’ Crowdsourcing Database Structure . 98
6.2.16 The INSANE extended with Distributed Hash Table 101
6.2.17 Example for an INSANE distribution . 102
6.2.18 Example for an INSANE distribution with DNS-Extension 104
6.2.19 MapBiquitous’ Crowdsourcing Architecture . 106
6.3.1 Interplay Client/Server: Anonymity-Problem . 107
6.3.2 Interplay Client/Server: Anonymity- and Bottleneck-Problem solved 108
7.2.1 Actual MapBiquitous Architecture . 116
7.3.1 WFS-Request via Building Server Crowdsourcing Module 119
8.2.3 WFS Overheads . 128
8.2.4 Fingerprinting Overheads . 131
8.2.5 Positioning Overheads . 133
8.3.1 Performance & Scalability Statistics . 135
8.3.3 Scalability: RAM Recommendations . 138

Tables within this Part
8.1.1 Compliance with Design Goals . 123
8.2.1 Results for exemplary WFS requests . 127
8.2.2 Results for exemplary WFS requests in % . 127
8.3.2 Scalability: RAM Recommendations . 137

66 TABLES WITHIN THIS PART

5 REQUIREMENTS REVIEW

‘A strange game. The only winning move is not to play. How about a nice game
of chess?’

W.O.P.R. (War Operation Plan Response), WarGames, 1983

68 Chapter 5 Requirements Review

REQUIREMENTS REVIEW

As the goal of both Gerd Bombach’s assignment paper as well as this thesis is the introduction
of crowdsourcing to the MapBiquitous project, a well thought-out concept must be envisaged.
But, before such a concept can be actually designed, it is necessary to determine what the con-
cept is supposed to cover in means of not only functionality, but also data to be processed, etc.
In short, a requirements review is to be conducted.

Gerd Bombach and the author of this thesis have identified a set of design goals for the crowd-
sourcing to be introduced which shall be adopted as requirements. Starting from the tasks handed
out to both authors53, a rather limited set of two requirements can be directly derived. The set
includes automated processing of crowdsourced data, and limitation to a few selected data to
collect without obstructing future addition of further collectible data. – Taking a closer look at
these two requirements, a rather complex subset of requirements can be identified.

Firstly, the requirements subset definitely include a demand to keep the system working even
if a user should decide not to participate in the crowdsourcing. This first requirement automat-
ically mates with another requirement derived from the original set: Users shall be given the
choice whether to participate in the crowdsourcing or not. For this to work, any existing inter-
faces must remain untouched or – if inevitable – should be only slightly modified. For the case
of users declining participation in the crowdsourcing, the subset review terminates here, while
further requirements can be identified for the case of participating users.

After having conceived the crowdsourcing taxonomy in Definition 2.2.1, the authors wish to im-
plement exemplary use cases for all four main types of crowdsourcing in the crowdsourcing
process itself, but due to limited time, this wish cannot be regarded as a requirement. In lieu
thereof, the awareness differentiator shall be of primary focus, making examples for ADC and
AIC a requirement. Maintaining crowd awareness (refer to Definition 2.2.4) automatically mates
with this requirement. U∗C-crowdsourcing shall be prepared, but not implemented.

Independent of the type of crowdsourcing, the authors wish to add another requirement, which
is neither specified in the tasks, nor derivable from the task: anonymity shall be emphasised.
Any user participating in the crowdsourcing shall – if possible – not be made known to the crowd-
funders, in this case the building server. To the very least, their personal data (their identity)
shall remain disclosed from the crowdfunders. Further, the consent to participate in the crowd-
sourcing should be revocable so that a user can decide to return to be a user using the exist-
ing default interfaces of the system. This requirement mates with the demand to be able to
delete/remove/erase/revoke (‘drer’) submissions from the system, which cannot be fully ful-
filled, as this requirement collides with another: at some time the crowdfunders wish to sift
submissions and rely on them being available thereafter; hence, submissions should only be
drerable for a certain time. In correlation, an overview and possibility of retroactive modification
of past submissions is desirable for users. Also, legal as well as business management aspects
may arise, including the demand to be able to reproduce distinct users’ action, e.g. in order to
exclude trolls54 and other negative influences from the system. This demand pairs with a need
for quality review of some sort, e.g. by holding back information until it has been verified by a
certain number of contributors.

In order to provide at least two different examples of crowdsourcing, the authors wish to ac-
tually implement correction of positions provided by the MapBiquitous system (i.e. fingerprint
data) and additionally prepare GSM information extraction. For this, GSM data should be as-
certained and stored, but not processed. Future additions to the set of desired crowdsourcing

53 The task at hand for this thesis can be found on page 3; Gerd Bombach’s task is almost identical, but with focus on
explicit crowdsourcing.

54 For example, a user constantly submitting false data in order to annoy/aggravate other users of the system may be
considered a troll.

69

methods should not be obstructed; therefore, modularisation of the application logic should be
considered, allowing easy addition of further crowdsourcing methods.

As a last requirement towards system functionality, for reasons of usability, a direct feedback of
crowdsourcing submissions is desirable for the users of the system.

After having focussed on functionality, other aspects of requirements should be investigated.
Of course, it is in the nature of the dynamic size of the crowd that it is unforeseeable how many
or how few participants decide to contribute to the crowdsourcing process. Hence, it is logical
to demand that the architecture to be designed provides service for few as well as many par-
ticipants. In general terms, the system needs to scale well, meaning good scalability should
be a design goal. While having it scale well, the system should be of good performance, too.
Normally, performance can be archived by optimisation of code, communication protocols, et
cetera, but this is not applicable for the academic approach presented within this thesis and
[Bom12]. Especially the source code should be expandable for following generations of stu-
dents working on the project, so the focus should be set on good documentation as well as
easily understandable and expandable code, rather than optimisation. Further, the system itself
should be able to support addition of further crowdsourced data and/or application logic. Hence,
the system should ideally be modularised, allowing easy modification and addition of application
logic. The application logic should then not be limited to processing of stored data, but it should
also allow the configuration of ascertainment and storing parameters. In this spirit, each module
should define which data types and communication expectations it has.

Looking even further into the systematic aspect of the architecture requirements, security once
again hits the eye. Not only should security be investigated as described earlier on functional
level, but also in means of encryption of communication channels, encryption of stored data,
hardness against attacks, etc. From this, a basic set of requirements can be directly and easily
be derived: communication and data storage shall be encrypted, and access requires authen-
tification and authorisation. But, these two requirements must be met without binding users of
the system to certain components of the architecture; hence, a final requirement can be identi-
fied: users of the system shall be loosely bound to infrastructure components.

5.1 DATA PROTECTION ISSUES

Originating in the nature of crowdsourcing, a huge amount of data is transmitted from the crowd
to the crowdfunder. In the context of the MapBiquitous project, large quantities of data are up-
loaded from the clients and evaluated on the servers. Possibly, this happens without the users’
awareness of such processes. Hence, it is imperative to ensure a high degree of data protec-
tion, especially the users’ privacy must be protected at all costs, without leaving authorities out
of scope. A review of legal boundaries of collectible data, collected data, protectable data and
protected data is required.

The review of data protection issues is imperative in light of recent events. As stated in [Bec12,
Sch12], on 4 September 2012 the hacker group AntiSec released files with over a million Unique
Device identifiers (UDID) of devices running on the iOS operating system. Of course, the exem-
plary implementation of the concepts to be introduced in this thesis will be conducted under
the Android operating system, but the problem is true for Android, too. Basically, many program-
mers tend to use the UDID as an identification means to separate app users from each other.
When obtaining the UDID, it is theoretically possible to determine all apps a user has down-
loaded from an app store. Even further, as [Bec12, Sch12] summarise, some weakly protected
services divulge private information such as email addresses or usernames for social networks
such as Facebook. In lieu thereof, goal 2d turns out to be a valid addition by the authors.

70 Chapter 5 Requirements Review

Comment

The review of legal boundaries shall be limited to a focus on Germany, as this thesis is writ-
ten at a German university, the MapBiquitous project is located at a German university, and
the scope is within the field of computer science, not (international) law...

5.1.1 Legal Boundaries in the Federal Republic of Germany

In general, Germany has a strict policy on data protection for government institutions, such as
the police, registry offices, etc. Further, physician, dentists schools and universities are subject
to strict requirements of data protection, as well. As the MapBiquitous project is currently under
development at a German university, German data protection requirements apply automatically
and compulsory. Additionally, any government or non-government organisation are subject to
the German ‘Bundesdatenschutzgesetz’55 (BDSG) [Bun90], which basically defines a minimum
consensus of data protection standards. Other boundaries, such as compulsory data storage
and allowed data storage are defined in Germany’s ‘Telekommunikationsgesetz’ (TKG)56 (TKG)
[Bun04] and ‘Telemediengesetz’57 (TMG) [Bun07]. Nevertheless, fundamental rights, such as
informational self-determination, strictly apply due to the German constitution (‘Grundgesetz’
(GG) [Bun49]).

The rights and obligations defined within the BDSG cannot be voided, only complemented by
additional, stricter rules and obligations, or they must be explicitly waived by the affected person
or organisation. Many organisations hence define corresponding rules in their terms of use or
end user license agreements. For example, Facebook Inc. explicitly asks their users to waive
their rights in Germany, stating the place of jurisdiction to be the Republic of Ireland. This ‘ex-
port’ of data protection jurisdiction is only permitted within the European Union (EU) and Euro-
pean Economic Area (EEA) as long as the organisation at hand has no branch in Germany. As
soon as a branch is opened in Germany or the organisation only resides outside the EU/EEA,
German data protection laws automatically apply for individuals in Germany.

The BDSG defines:

• section 1 (§1 through §11): general and shared regulations,
• section 2 (§12 through §26): data processing by public authorities,
• section 3 (§27 through §38a): data processing by private institutions,
• section 4 (§39 through §42): special prescriptions,
• section 5 (§43 through §44): penalties and administrative fines, and lastly
• section 6 (§45 through §46): temporary arrangements58.

Fundamental concept of the law is to protect individuals from being harmed in their personal
rights. Hence, the law basically prohibits ascertainment59, processing60 and use61 of personal
data, unless the affected individual explicitly gives their consent. Personal data therein is de-
fined as any data which can be used to describe personal or factual relations of an individual.
This data must not contain the name, as individuals can be determined using other data such
as telephone numbers, email addresses, personnel numbers, etc., as well. In contrast to per-
sonal data, anonymous data can be considered any data indeterminable, such as a calculated,
irreversible SHA hash of the personnel number. Pseudonyms are considered personal data, not
anonymous data. Neither personal data, nor anonymous data and therefore not scope of the
law are corporate bodies and their data.

55 Federal Law on Data Protection
56 (Federal) Law on Telecommunication
57 (Federal) Law on Telemedia
58 The Bundesdatenschutzgesetz was last amended in 2009.
59 Acquisition of data on individuals directly from the individual or from third parties with knowledge of the data.
60 Storing, modification, transmission, blocking and/or deletion of data.
61 Any handling of data which can neither be considered ascertainment nor processing.

5.1 Data Protection Issues 71

Basically, ascertainment, processing and use of personal data is prohibited, unless a law allows
them or explicit consent (§13(2) et sqq. BDSG) is given. As soon as a law allows ascertainment,
processing or usage, or an individual gives their explicit consent, the law dictates(§3a BDSG)
eschewal and thrift methods. Especially, data should be anonymised whenever possible, or they
should not be stored in the first placed if possible.

Any non-government organisation must appoint a data protection official as soon as at least ten
(§4f(1)4 BDSG) employees regularly work with personal data using automated methods62, or
twenty (§4f(1)3 BDSG) employees regularly work with personal data using manual methods63.
Should no data protection official be appointed, automated methods are due notification (§4c(1)
BDSG) to controlling authorities.

Rights defined for affected individuals are unwaivable (§6(1) BDSG) and include:

• disclosure if and upon which personal data of the individual are stored,
• disclosure of the source of the personal data of the individual,
• disclosure of the intent of the ascertainment, processing and use of the personal data of

the individual,
• summons to correct false or falsified personal data of the individual by the individual,
• summons to delete personal data of the individual by the individual,
• summons to block64 personal data of the individual by the individual, and
• appeal at the responsible controlling authority by the individual.

Disclosure is to be granted free of charge (§19(7) BDSG) by authorities and government organ-
isations, whereas private organisations may charge (§34 BDSG). The rights of disclosure upon
which personal data are stored and their origin/source may be denied iff public interest out-
weigh the individual’s personal rights, e.g. when government secrecy applies. Denials must be
investigated on a per-individual basis and may not be declared a general rule; further, denials and
their grounds must be put into protocol with the responsible controlling authority.

A totally different aspect of German laws takes scope not on data protection, but on compul-
sory data collection. Currently, only telcos are obliged to mandatory storage of connection data,
such as IP addresses, access times, etc. by European directives. But, these directives have not
sufficiently been implemented into German law. Hence, laws (e.g. §113 TKG) implement telcos’
obligations to share connection data with (police) authorities, but whether the actual sharing
is reconcilable with the German constitution is in dispute. In fact, fundamental rights declared
in the German constitution such as the secrecy of telecommunications (Art. 10 GG) and the
right of informational self-determination (Art. 2, Sect. 1 GG in conjunction with Art.1, Sect. 1
GG) seem to be incommensurate with the wanted sharing of communication data. The Fed-
eral Constitutional Court of Germany has ruled that German telecommunication laws must be
amended in order to commensurate to the constitutional rights [Bun12]. According to laws as
by time of the ruling of the Federal Constitutional Court of Germany, telcos must delete com-
munication data immediately after connections are terminated, unless the data is required for
accounting purposes. Hence, especially IP data are currently deleted after 7 days. Beyond that,
data storage on servers is limited, as well. Data may only be stored to an extend required to
offer services requested; any storage beyond that is illegit (§15 TMG). There exists a variety of
corresponding court rulings, e.g. from the State Court of Berlin [Lan07].

Summarising, the concept to be developed for crowdsourced data ascertainment, processing
and evaluation in chapter 6 must adhere to the legal boundaries at any time, especially the user
of the system must be made aware of the ascertainment and processing. Therefore, the user
should be presented a legal disclaimer before being able to participate in the crowdsourcing pro-
cess. Further, the user must be given the possibility to revoke their consent at any time.

62 E.g. computer databases
63 E.g. paper record cards
64 I.e. personal data may not be transmitted to third parties; should they have been transmitted already, any third party

to which the personal data have been transmitted is to be informed of the block, and the third party must delete or
block, as well.

72 Chapter 5 Requirements Review

5.1.2 Collectible Data

Practically, any information transmitted to the servers can be considered collectible, even the
transmission itself can be considered information65. On a more obvious level, any information
digitisable can be considered collectible. Hence, the following list66 shall point out data col-
lectible by MapBiquitous clients; any collectible data shall also be considered available not only
in current time, but also available for past times due to storing/caching on the client:

• accelerometer/gyroscope,
• barometer,
• battery (load level, temperature, current, voltage, . . .)
• Bluetooth (ID, devices in reception range, PAN67-properties, ...)
• compass (direction of north pole, magnetic field strength, . . .),
• connected devices (headset, external antenna, remote control68, pay device69, . . .),
• GPS position (calculated results of GPS raw data),
• GPS raw data (received satellites, satellite time, satellite positions, . . .),
• GSM data (cell-ID, cell time, distance to connected cell tower, . . .),
• hardware (chipset, CPU, display resolution, hardware-IDs, firmware data, . . .),
• microphone (on/off, recordable acoustic measurands, . . .),
• NFC (ID, devices in reception range, . . .),
• radio (channels in reception range, current channel, antenna used, . . .),
• SIM (IMEI, contacts on SIM, SMS on SIM, . . .),
• state (screen on/off, . . .),
• statistics (conversations, SMS, calendar, temperature development, charge level develop-

ment, . . .)
• stored data (raw data, hashes, SMS, email, pictures, . . .),
• temperature (CPU, chipset, device casing, . . .),
• time (local time, boot/on time of device, cellular time, time of contacted NTP server, . . .),
• WLAN (on/off, connected/disconnected, connected access point, access points in range,

data rate, encryption used, . . .),
• . . .

From these obvious information, a wide range of derivable information can be gathered, e.g.:

• preferences (surfing, on/off times, brand, etc.),
• safeness of usage (battery preferred being full versus always using the device until it is

empty),
• security of usage (no local cache or full cache history, respectively),
• camera usage (lots of photos taken with the device versus almost none (i.e. the user might

posses a digital camera); photos taken might be uploaded to Dropbox or similar (i.e. infor-
mation on user’s online/backup preferences),

• . . .

5.1.3 Protectable Data

Basically, any data can be protected by simply erasing any trace of it. But, this would be very
utopian and impractical. Firstly, data transmitted from the clients to the servers must be some-
how received and intermediately stored by the servers. Hence, the actual transmission infor-
mation is not protectable in the beginning, so during reception and processing, the data cannot

65 One can determine which client transmits what, how much and when, exactly.
66 The list is sorted alphabetically and does not claim to be exhaustive.
67 Personal Area Network
68 Deskpets International has a connectable remote control device to remotely control little cars, tanks, robots, etc.
69 PayPal has a connectable NFC-device for in-shop purchases

5.1 Data Protection Issues 73

be protected. However, after ‘interesting’ data has been extracted from the data transmitted,
the actual reception as well as the received original data can be deleted and hence protected.
Also, some data may be required and should not be protected by deletion. For example, should
the service provided be used maliciously, a very high interest in the communication data arises,
especially the ones allowing identification of the culprit. Practically, many data protection offi-
cers encourage a two step storage philosophy: data (especially communication data) should be
stored as parsimonious as possible with reduced access privileges so that only an accountable
number of individuals can access the data. Should an infringement occur, this limited number of
individuals should access the data and only provide excerpts which are relevant to the infringe-
ment70.

5.2 DATA REQUIRED BY MAPBIQUITOUS

5.2.1 MapBiquitous: Data Collection, Storage, Processing and Protection

As it is not foreseeable which applications users may install on their mobile devices, the review
of collected data shall be limited to MapBiquitous aspects. In order to provide sufficient naviga-
tion performance, MapBiquitous currently is collecting either directly or indirectly the following
data:

• GPS data transmitted to the server (used for the fetching of map or building data),
• accelerometer data (experimental effort to enhance the localisation [Gru12]),
• compass data (experimental effort to enhance the localisation [Gru12]),
• connection data such as IP addresses, TCP stream identifiers, etc. used to connect the

MapBiquitous servers (the servers may log these data in access logs),
• usage frequency (the servers may log any access in access logs),
• users’ geo-profile (as the servers may log any access in access logs, preferred abode/where-

abouts may be derived (time-precisely)).

In course of the crowdsourced improvement of MapBiquitous proposed in this thesis and in
Gerd Bombach’s assignment paper [Bom12], the following data are proposed to be collected
and transmitted to the servers, as well:

• GSM data (especially on the GSM cells the user is in),
• POI data (new data the users may explicitly create),
• correction data (feedback on map data the users may provide), and
• movement data (information on whether users follow suggested route or not).

The so collected data must only be stored and processed in accordance to the boundaries de-
scribed in the previous section; hence, the collected data should never be released to third par-
ties, except law enforcement. Further, the data stored should be limited to the very minimum
allowing the crowdsourcing process to gather/calculate results as well as abiding lawful bound-
aries. For example, original submissions should be deleted from the storage after the informa-
tion has been extracted from the data. Additionally, connection data should be deleted immedi-
ately, or even better, never be created in the first place, as far as legal control regulations allow
it. Finally, any communication containing personal data should be encrypted, impeding their in-
terception.

Comment

Expanding the concept of how MapBiquitous should store data, it should be proposed to

encrypt the storage (e.g. the database), impeding an attacker/hackers capability of directly
70 I.e. not an entire log should be handed over to the police or prosecution, but only log-lines relevant to the infringe-

ment case.

74 Chapter 5 Requirements Review

accessing the information stored within the data in the time between submission of the data
and the time they are deleted. For the current proof-of-concept implementation of MapBiq-
uitous (23 September 2012), only the passwords are actually encrypted; therefore, a corre-
sponding passage is included in the legal disclaimer presented to the user when activating
crowdsourcing on their client device.

5.3 CONCLUSION

To the best knowledge of the MapBiquitous team, legal boundaries of German laws must be
accounted for by the MapBiquitous. The manner in which data is ascertained, stored and pro-
cessed must comply with German laws and any user should be made aware of the ascertain-
ment, storage and processing of the data at hand; at least the users are required to confirm a
corresponding legal disclaimer when using the MapBiquitous system.

A not exhaustive list of design goals emerges when considering diverse aspects of desired sys-
tem functionality and legal boundaries:

1. Possibility to not participate in the crowdsourcing.
(a) The system shall remain usable as to now.
(b) Are modifications inevitable, they shall be as minimal as possible.
(c) Only basic data without amendment of crowdsourced corrections/additions shall be

accessible.
2. Choice to participate in the crowdsourcing.

(a) Legal boundaries of the Federal Republic of Germany (BDSG) are to be adhered.
(b) Aware crowdsourcing (A∗C) with crowd awareness shall be supported.
(c) Unaware crowdsourcing (U∗C) shall not be obstructed.
(d) Participation shall be anonymous against the crowdfunding building servers.
(e) Submissions shall be delete/remove/erase/revoke-able (‘drerable’).
(f) Submissions shall only be drerable for a defined time.
(g) Submissions shall be reviewable.
(h) Submissions shall be siftable.
(i) Submissions shall lead to direct feedback.

3. The crowdsourced system architecture must be extensible and secure.
(a) Required application logic shall be easily replaceable, e.g. by loading a module.
(b) The source code of new components shall be self explanatory and easily extensible

rather than highly optimised.
(c) Data ascertainment must be extensible and configurable.
(d) Communication must be encrypted.
(e) Data stored on servers must be encrypted.
(f) User shall be bound to infrastructure components only loosely.
(g) GSM data shall be ascertained and stored for future processing and information ex-

traction.
(h) As proof of system function, at least one crowdsourcing method (position correction)

must be functional at the end of the implementation time.

Obviously, goal 1a excludes goal 1b, but not vice versa. Further, the goals 2e and 2f are inextri-
cably bound reciprocative. Goal 2g has potential to obstruct goal 2i; hence, a clever solution ob-
structing neither of the goals too much must be found. Lastly, goal 2h is strongly correlated with
goal 2e, as submissions that are considered ‘sifted’ should not be drerable. A more comprehen-
sive overview of the relations between the first two sets of goals can be seen in Figure 5.3.1.
The third set of goals is not considered in the figure as it surmounts the other two sets. This es-
pecially means that goals originating in the first two sets may be softened or even abandoned
should they endanger on of the goals from the third set.

5.3 Conclusion 75

Figure 5.3.1: Overview of the relations between the different design goals

76 Chapter 5 Requirements Review

Goal 2d is not limited to anonymous access, but should be considered in a broader context as
the possibility to access a building server without exposing one’s identity. Of course, the build-
ing server should be able to recognise actions originating in the same user, ensuring goals 2e as
well as 2g, and especially goal 2i.

The so defined list of design goals is considered not to be exhaustive, as further requirements
may arise while designing the conceptual extension of the MapBiquitous system as well as
when actually implementing the concept. Therefore, requirements which may arise after the
herein given requirements review is concluded shall be recorded at the point they arise71.

71 Requirements that are obviously important shall be clearly marked as ‘new requirement’, but any other requirement
shall be implicitly given by the usage of subjunctive/conjunctive phrases.

5.3 Conclusion 77

78 Chapter 5 Requirements Review

6 CROWDSOURCED OPTIMISATION
CONCEPT

「理由は百年にブリッジをするためにどのような取り到するための一夜の信仰の
翼を取るだけ。」

神のメモ –アリス

80 Chapter 6 Crowdsourced Optimisation Concept

CROWDSOURCED OPTIMISATION CONCEPT

Currently, MapBiquitous lacks a reliant source of map data and/or corrections of the same. Of
course, the basic concept of having building owners provide ichnographies, floor plans, POIs,
etc. of ‘their’ buildings is still valid, but the time until updates and/or corrections are applied into
the map on the directory server and/or building servers may exceed acceptable limits, hence in-
correct data may supersede practical data. A radical new approach would be to include the Map-
Biquitous users into optimisation process. A very straightforward approach would be to make
use of crowdsourcing, turning all users into the crowd, whereas the directory server and the
building servers would act as crowdfunders. The actual data to be collected by the crowd would
be user generated quality feedback and corrections (explicit crowdsourcing) on the one hand,
and derived information from user observation data on crowdfunder-side (implicit crowdsourc-
ing) on the other hand. The conceptual design idea of a crowdsourced MapBiquitous is depicted
in Figure 6.0.2.

Figure 6.0.2: Conceptual design of a crowdsourced MapBiquitous

Looking back at the requirements identified earlier in chapter 5, the division into crowdsourcing
clients and crowdfunding servers does not affect design goal 1, as users denying participation
in the crowdsourcing could be considered crowdsourcing clients that do not hand in any sub-
missions (passive participant). In this sense, the actual crowdsourcing interface between crowd
and crowdfunder should only be added to the existing system, ensuring goals 1a and 1c are ob-
tained. In the best case, goal 1b will never be of consideration as goal 1a excludes goal 1b, or
the other way round, goal 1b makes goal 1a unobtainable.

Goal 2d forces the usage of a proxy handling requests between the clients and the building
servers and directory service respectively, since any direct communication between them would
expose the client’s identity72 to the servers. For obvious reasons, the goals 2e, 2g, 2h and 2i
can only be obtained by usage of the proxy as well, since any submission needs to be prox-
ied due to goal 2d. Therefore, only the proxy is able to link submissions to their submitters;
hence, drering a submission or all submissions of a certain user is only possible with help of the
proxy, and only the proxy is able to gather intermediate result from the crowdfunders in order
to give direct feedback to submissions. Obtaining goal 2f in this context is actually easy: should
the proxy request drering a submission, the crowdfunder simply denies. Of course, the proxy
should inform the client of the denied drering.

72 At least the current IP-address and all information derivable from the IP-address.

81

As goal 2d was added by the authors, it is fair to consider modifications to the existing system
under the premise that goal 2d does not actually exist. Even then, the goals 2e, 2g, 2h and 2i
clearly lead to the demand of a proxy handling the submissions. Should there be no proxy, all
crowdsourcing data must be stored either on the clients, the building servers or the directory
server. Firstly, storing all data on the clients is unfeasible for a variety of reasons, including but
not limited to accessibility problems, such as a crowdfunder wanting to review all submissions
made for a certain point of interest; what to do while clients are offline and hence their data in-
accessible? Secondly, storing the building server data on the corresponding building servers is
unfeasible for a wide range of reasons, too. For example, building servers would need to com-
municate with each other in order to collect all submissions made by a user, automatically turn-
ing the directory service into a communication bottle neck as all building servers cannot know
each other; hence, having have to look each other up via the directory service. Further example,
the availability of submission data is at risk should a building server be unreachable or abandon
service. Then, storing submission data on the directory server may be considered feasible in
terms of centralised accessibility, but it is unfeasible when considering the accrued communica-
tions bottle neck. Also, it could proof infeasible when accessing the directory server from differ-
ent geographic regions. Anyhow, having have to modify the directory server vastly, maintaining
goal 1b would be utopic.

Having the building servers actually process the information contained in the submissions and
leaving any decision concerning the information to the building servers ensures compatibil-
ity with both goals 2b and 2c. It is most important to actually regularly make the users of the
clients aware of the aware crowdsourcing in order to properly obtain goal 2b, e.g. by regularly
displaying a corresponding disclaimer, and ensuring that consent given by the users has limited
time of validity.

Lastly, anything to be added to the system shall be designed from start to fulfil goal 2a by limit-
ing transmitted and stored data to the very minimum possible.

All of the concepts and ideas that are going to be introduced in this chapter can be found in
the summarising Figure 6.0.3 and Figure 6.0.4, wherein necessary modifications to the exist-
ing MapBiquitous architecture as well as proposed communication paths are highlighted. As a
reminder, the original MapBiquitous architecture can be found for comparison in section 1.3 in
Figure 1.3.1.

6.1 CROWDSOURCING CLIENT

As mentioned earlier, the conceptual idea for the crowdsourced MapBiquitous divides the sys-
tem into crowdsourcing clients and crowdfunding servers. As the latter is extensively discussed
within this thesis (refer to section 6.2), the first is extensively discussed in Gerd Bombach’s as-
signment paper ([Bom12]) and shall not be presented within this thesis. The interested reader if
kindly refered to [Bom12].

82 Chapter 6 Crowdsourced Optimisation Concept

Figure 6.0.3: Simplified concept of proposed modifications to MapBiquitous’ architecture in
order to implement crowdsourcing

6.1 Crowdsourcing Client 83

Figure 6.0.4: Display of the communication paths in the simplified concept of proposed modifi-
cations to MapBiquitous’ architecture – Note: from the client’s view point, the directory server
is no longer required when following the crowdsourcing access path; of course, the INSANE
may or may not request directory information from the directory server, but this is not part of
the access path

84 Chapter 6 Crowdsourced Optimisation Concept

6.2 CROWDFUNDING SERVER

Independent of the data collected at the crowdsourcing client, a reliable server-side crowdfund-
ing must take place. Reliability in this context is not limited to ‘reachability’, but also includes
legally binding and reproducible storage of the data at hand (refer to section 5.1). The basic idea
now is to store as many information as possible with as few data as necessary. But, the prob-
lem is what can be considered necessary data. As this question cannot be answered satisfacto-
rily as it is not known which information is deemed ‘wanted’, all data collectible should (partially)
be storable on the crowdfunding server, ensuring extensibility of the crowdsourced informa-
tion retrieval at a later time. Of course, this rises data protection issues, so it shall be suggested
to store all data anonymised, but still related to the clients, making multiple submissions of
the same crowdsourcing data from the same client impossible. Further, any submissions shall
be signed using asymmetric crypto functions, so that submissions can be proven towards the
clients and servers.

Comment

For this section, it shall be of imperative understanding that the crowdsourcing as designed
within this thesis only affects the indoor navigation capabilities of MapBiquitous. The out-
door component shall remain untouched (refer to figures 6.0.3, 6.2.1 and 6.2.19).

The remainder of this section shall extend the basic modification concept introduced earlier (re-
fer to Figure 6.0.3) by contributing to identification of the crowdsourcing clients while maintain-
ing their anonymity towards the building server as well as protecting the communication from
intrusion/interception with help of encryption. Then, modifications to the building servers will
be discussed before introducing a new entity to the system, the INSANE. Access control issues
on side of the building server as well as required database structures are thereafter discussed
before concluding with suggestions to optimize the beforehand introduced INSANE. – All exten-
sion and modification73 that are going to be introduced are displayed in Figure 6.2.1.

6.2.1 Anonymity and Identification of Clients

The easiest way to accomplish the design principle of anonymity towards the building servers
– as a reminder: goal 2d – is to not transmit any personal data of the clients at all; hence, only
using a pseudonymised means of identification when communication should take place. This
pseudonymisation shall be easily reproducible, delivering always the same identification tokens,
but irreversible, so that the building servers cannot obtain information beyond the scope of the
original submitter identity, such as their IP-address, their registered email-address or other per-
sonal data that may be stored within the crowdsourcing participants’ user-profiles. Another as-
pect of anonymisation, or at least not gathering unrequired data, is not to transmit the clients’
hardware identifications into the system. The easiest way to guarantee this is by not trans-
mitting any hardware information at all, especially when considering the problems described
in [Bec12]. Unfortunately, different devices may contribute different measurands to the crowd-
sourcing74; hence, it may be imperative for the crowdfunder to be able to differentiate between
a user’s different devices. When considering the disclosure of the existence of different de-
vices of a user, hash functions seem to satisfy the anonymity desire toward the unique hard-
ware identifiers; therefore, identification tokens to separate one and the same user’s different

73 The architecture in Figure 1.3.1 displays the fingerprinting service as part of the building servers; however, the actual
implementation by S. Gruna [Gru12] uses a dedicated fingerprinting service separate from all building servers. This is
accounted for in Figure 6.2.1.

74 E.g. devices of different manufacturers provide different measurands for the same location when calculating the
corresponding WLAN fingerprint.

6.2 Crowdfunding Server 85

Figure 6.2.1: Concept of proposed modifications to MapBiquitous’ architecture in order to imple-
ment crowdsourcing

86 Chapter 6 Crowdsourced Optimisation Concept

devices shall be calculated as a SHA-256 value75 of the crowdsourcing client’s unique hardware
identification, which should automatically bind the token to the hardware of the client, allow-
ing to maintain the same token even if the SIM or the operating system of the client should be
exchanged, while each individual client device of a user has a distinct identification token. How-
ever, this concealment of the hardware-ID should be done in parallel to the use of submitter-
pseudonymisation; therefore, the hardware-ID is concealed, but still linkable to the individual
user. Considering goal 2i paired with a possible future demand of extracting information from
the crowdsourced data that is ascertained only by certain device types, this is totally okay and
supportable.

Comment

As a reminder, the system should work with only a username and a password, but the pro-
posed device/client identification token may be of use should a differentiation of different
devices of the same user be required. For the remainder of this thesis, it shall be assumed
that such a differentiation is required.

The usage of SHA-256 instead of MD-576 shall ensure absence of collisions77 as well as sim-
plicity of calculation. SHA-256 allows a maximum input length of 264 − 1 bits (round about 2
Exbibyte), always outputting a string of 256 bit length, while computation performance is only
reduced to about 40% of MD-5 performance78. Of course, usage of SHA-512 would enlarge the
set of possible hash values, but the calculation principle is the same as for SHA-256. On 3 Octo-
ber 2012 the United States National Institute of Standards and Technology (NIST) proclaimed the
successor of SHA-2 – the hash family which SHA-256 belongs to – by presenting SHA-379 which
is based on a totally different algorithmic approach. Therefore, the usage of hashes is conceptu-
ally forced, but SHA-256 shall only provide as an example.

The above mentioned hardware identification token should not be limited to the International
Mobile Equipment Identity (IMEI) which all GSM-devices posses, as actually only GSM-devices
can provide it. Instead, whatever unique hardware identification provided by the device itself
should be used. For devices operating under the Android operating system, this hardware iden-
tification depends on the primarily used connection type; especially, the IMEI is provided when
GSM is present. Additionally, UMTS-based identification, etc. is provided.

Further, identity theft should be prevented by using passwords in combination with a username
and the identification token of the used client. This will be important when expanding the Map-
Biquitous project to interact with or be part of other projects that include social community as-
pects, such as the usage of names, avatars, mail addresses, etc. As password should be cho-
sen by the human users themselves, it is natural to suggest an appropriate implementation of a
user-choice password-generation.

Comment

For the proof of concept, the IMEI is a simple means to calculate an unique client identifica-
tion token while maintaining anonymity, but for in vivo implementations it is not feasible, as
GSM communication is not encrypted; hence, everybody intercepting the GSM radio waves
would be able to calculate the client identification token.

As the original idea of Gerd Bombach and the author of this thesis stipulated the usage of the
IMEI, the rough idea shall be noted before presenting the final draft. – The IMEI is an (hopefully)
unique number, allowing identification of mobile phones in GSM-networks, which is normally
branded into the devices hardware. As such feature, modification of the IMEI is liable to prose-
cution in some countries. All devices manufactured as of 2004 (which should include all smart-
phones) build their IMEI from
75 SHA-256 is one of the algorithms suggested in the SHA-2 set of cryptographic hash functions.
76 Message-Digest Algorithm 5
77 Collisions have been proven for MD-5. Therefore, experts advise not to use MD-5 any longer.
78 According to ‘Crypto++ Benchmarks’.

6.2 Crowdfunding Server 87

• 8 digits – Type Allocation Number (TAN) – consisting of
– 2 digits Reporting Body Identifier (RBI) – the technical accreditation body,
– 6 digits Approval Licence (ALN) – the accreditation identification number,

• 6 digits – Serial Number (SNR) of the device, as well as
• 1 digit – Check Digit (CD) – not to be transmitted into GSM-network; replace with 0.

The idea would have been to calculate the client identification token as SHA-256 hash of the
IMEI and the client password as SHA-256 hash of the SNR. Unfortunately, as mentioned above,
the IMEI is not always available. Especially – as the proof of concept implementation is planned
to be conducted for clients operating under the Android operating system – the hardware iden-
tification provided by the android.telephony.TelephonyManager.getDeviceId()-method80

delivers disjunct values, such as the IMEI for GSM devices, MEID81 for CDMA devices, etc. The
format should be similar, often following the IMEI schema ‘########-######-#’, but disjunct
variants such as ‘##-######-######-#-##’, etc. are also possible. Therefore, the modified con-
cept envisages stripping all dashes (‘-’), slashes (‘/’), etc. from the hardware identification and
calculating the SHA-256 hash of whatever remains, presumably digits. The result shall then be
the client identification token to be used when communicating with other entities in context of
MapBiquitous. Further, the substring starting at position 6 of the stripped hardware identifica-
tion shall be used to calculate the client’s default password by hashing over it in the same way
as done for the client identification token.

Comment

The usage of the IMEI (or on some devices: UDID) must be very carefully monitored, as
sloppy usage yields a security risk, as shown e.g. in [Kir12].

In summary, the following must be calculated/generated at the crowdsourcing client’s side:

Definition 6.2.2 – User and client

A human or other (intelligent) entity utilising the services provided by the MapBiquitous sys-
tem is considered a user. Any (uniquely identifyable) device utilised by the user as interface
device shall be considered a client.

Definition 6.2.3 – User-individual username

The user-individual username of a user is an arbitrary string over a predefined alphabet of
predefined maximum length, iff the selected string allows bijective mapping of the user’s
identity to a corresponding database record.

Definition 6.2.4 – Client-individual identification token (clientID)

The client-individual default identification token is a string over the hexadecimal-alphabet{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f

}
calculated by the client. It is the SHA-256 hash of the

client hardware identification stripped of its dashes. In Pseudo-Java, the calculation follows:

deviceID = android.telephony.TelephonyManager.getDeviceId();
clientID = sha256(deviceID.replace("-",""));

80 http://developer.android.com/reference/android/telephony/TelephonyManager.html#getDeviceId%28%29
– Accessed 27 August 2012

81 Mobile Equipment Identifier

88 Chapter 6 Crowdsourced Optimisation Concept

http://developer.android.com/reference/android/telephony/TelephonyManager.html#getDeviceId%28%29

Definition 6.2.5 – User-individual password

The user-individual password of a user is an arbitrary string over a predefined alphabet of
predefined maximum length. The selected string is not required to allow bijective mapping
from client identification to password, but it must be surjective.

Definition 6.2.6 – User-individual submitter identification token

The user-individual submitter identification token of a user is an arbitrary string over a prede-
fined alphabet of predefined maximum length. The selected string is required to not allow
mapping to the username or password.

Exemplarily, the following could be considered: A user chooses to use the username ‘muster-
mann’ and the password ‘password’ and the device they use has the IMEI ‘12345678-123456-8’.
The given information could lead to

• the user-ID ‘e32a370b7912ad78cc6a88fda605a5b3657e9c3b164cee669364aaf3f8cdbb36’,
if the user-ID was created by calculating the SHA-256 hash of the username,

• the client-ID ‘a6726e1f5cbea0bcf53ee9feeb05e5f80d2a42cb16c0892d94b44c2ed99628-
d5’, if the client-ID was created by calculating the SHA-256 hash of the reduced IMEI (as
described above), and

• the submitter-ID ‘c231a712af7413a7f5e22e35f376a17aaf8b44e0aaf46352bef4086c918-
9eb19’, if the submitter-ID was created by calculating the SHA-256 hash of the UNIX-time-
stamp of the current time (e.g. 1349293093) concatenated with the username concate-
nated with a random integer (e.g. 17742).

6.2.2 Safety from Interception through Encryption

However, the entire calculation/generation of hashes and selection of usernames and password
is meritless, should the hashes be transmitted in plaintext between client and server. Therefore,
encryption of any transmitted data should be considered. There are two ways to reach the de-
sign goal of encryption; firstly by implementing a crypto-suite, and secondly by relying on ready
to use solutions.

The first idea can be ruled out quickly, as the generation of large prime numbers required by
the Diffie-Hellman algorithm to exchange symmetric keys over an unsecure channel is not fea-
sible on mobile devices such as smartphones, especially Android devices. Android uses a partial
Bouncy Castle package to handle most of its cryptography, but this Bounce Castle implemen-
tation is by far not complete. Therefore, programmers often prefer to use other cryptographic
packages such as Spongy Castle, but those packages, i.e. non-Android Java crypto libraries, are
often not entirely supported by Android as Android does not support all Java packages those
packages might require.

Should all required packages be available and supported, feasibility may be given as following
short example82 proofs: Overall, using Diffie-Hellman a shared key for encryption of communica-
tion shall be exchanged, which’s length shall be limited to 4096 Bit, or 512 Byte. At first, ‘large’
prime numbers must be generated in order to ‘secure’ the actual Diffie-Hellman-based commu-
nication. The question what ‘large’ or ‘large enough’ is in context of prime numbers shall be left
unanswered here; rather, two prime numbers83 of length 12 shall be chosen and deemed ‘large

82 The example should be easily derivable as high expectations towards computation power for encryption should
be generally known; nevertheless, this example is based on the information available at http://java.sun.com/
developer/technicalArticles/Security/AES/AES_v1.html in combination with http://www.helloandroid.
com/tutorials/encrypting-your-data and http://www.androidbenchmark.net/cpumark_chart.html
– Both accessed 27 August 2012

83 For example, 123456789011 and 987654321097 could be chosen.

6.2 Crowdfunding Server 89

http://java.sun.com/developer/technicalArticles/Security/AES/AES_v1.html
http://java.sun.com/developer/technicalArticles/Security/AES/AES_v1.html
http://www.helloandroid.com/tutorials/encrypting-your-data
http://www.helloandroid.com/tutorials/encrypting-your-data
http://www.androidbenchmark.net/cpumark_chart.html

enough’. Random generation of each of the numbers with subsequent prime number test84 on a
HTC Desire Z takes an average of 40µs when computed exclusively, which is actually fast. Even
when not being computed exclusively – as the Android devices are actually meant to be phones
and also numerous background programmes must be computed multi-tasked – only 80 to 100µs
pass. The server may compute its prime number even faster. The following encryption using
the exchanged key can be conducted within a few µs, as well.

Further, any communication to take place has to be encrypted and/or decrypted by an dedicated
module, while signatures must be generated/verified, as well. Basically, an implementation of a
key exchange similar to Diffie-Hellman could be considered, e.g. using general random numbers
instead of primes, etc.

The second idea can be very easily implemented: As MapBqiuitous already uses HTTP-based
communication between client and server, the easiest way to acquire encryption is to use HTTPs
instead of HTTP. As most mobile device operating-systems, such as Android, support HTTPs na-
tively, only a few modifications to the source code on client-side are necessary. On server side,
normally some sort of server service is running, e.g. Apache Tomcat. Commonly, these service
implementations support HTTPs natively, so no modification of server side source code is re-
quired in order to implement HTTPs-based secure communication. Hence, the only actual prob-
lem to be solved on both sides is the implementation of methods for reproducible and verifiable
signatures. The performance of the certificate-based HTTPs encryption85 is even more feasible
than – if implementable – Diffie-Hellman on Android.

Now, after having found basic concepts for anonymisation and encryption of the communica-
tion, the actual storage on server-side shall be focussed in the following subsections.

6.2.3 Unaltered Directory Server and Modified Building Server

Figure 6.2.7: Modifications to the building
server

In order to maintain scalability of the system,
it is of no advantage to store crowdsourc-
ing data on the building servers or the direc-
tory server (refer to Figure 1.3.1 for details on
building servers and the directory server). –
Firstly, the directory server as discovery com-
ponent for responsible building servers has
nothing to do with the crowdsourcing pro-
cess; therefore, no data needs to be ‘writ-
ten’ to the directory server by the clients.
Hence, focus on ‘write-access’ can only be
applied to the building servers, or in more im-
plementable words: Besides a simple setter
used to add new building servers, the direc-
tory server only requires getter methods. As
these are existing already, no modifications to
the directory server are required. Considering
the demand for encryption to be introduced
in the previous subsection, the communication protocol for communication between clients, the
directory server, and the building servers should be changed from Hypertext Transport Protocol
(HTTP) to Secure Hypertext Transport Protocol (HTTPs). But, luckily this only requires setup of
an SSL certificate and a one-line modification to the server configuration.

84 I.e. to check whether n is a prime number or not, each number from 2 through
√

n must be analysed whether it is a
factor of n. For a 12 digit number this takes a maximum of 212 = 4096 distinct factor tests.

85 Transport Layer Security (or antediluvian Secure Sockets Layer) uses certificates and random numbers which are not
prime.

90 Chapter 6 Crowdsourced Optimisation Concept

Secondly, as the herein discussed86 ‘write-access’ only affects the collection and storing of in-
formation gathered by crowdsourcing – e.g. in order to correct points of interest – any ‘read-only
access’ to the building servers should maintain untouched. This leads to an asymmetric access
characteristic, with untouched getter methods and newly created setter methods. Hence, the
building servers must be modified in order to accommodate write-access. Even further, a secu-
rity concept is necessary, defining who is allowed to write-access which data, so access control
lists (ACL) and/or capability-management should be introduced. As a consensus of scalability
and ease of modification of the existing components, ACL should be implemented on build-
ing servers, while reduced capabilities should be maintained by another entity either central or
decentral. These reduced capabilities have nothing in common with what generally is defined
as capability except for the fact that they allow clients to easily grasp which access rights they
have on which server.

As is true for the directory server, communication should be encrypted; additionally, any write-
access needs to be logged and made legally binding87 and reproducible88, so signatures should
be implemented alongside encryption. The three design-goals mentioned – ACL, encryption
and signatures – can be handled within one new component to be implemented, the security
module.

Additionally, the in any event existing ACL can also be used to grant certain reader privileges;
hence, adding different levels of accessible data via getter methods. E.g. the display of sensi-
tive infrastructure information, such as the location of server rooms, can be limited to users with
corresponding rights.

The setter methods on building servers are not supposed to write crowdsourced data directly to
the building servers as this has a negative effect on scalability, as all data is spread over the set
of all building servers, making it (almost) impossible to gather the data from all building servers,
or a selected subset of them, in a glimpse... The introduction of an additional entity can provide
the desired scalability and shall be introduced in the next subsection.

Finally, after having data communicated to and stored on the building server, the data must
somehow be utilised. For that, an application logic is required which can work on the direct
crowdsourcing data stored and extract further information from the indirect crowdsourcing data
stored. This cannot be done either on the client nor INSANE (introduced in the next subsection),
as computations with and on the data collected and stored must be conducted in context of
modifiable original data, which is only the case on the corresponding building server itself. Fur-
ther, the application logic implements the task of deciding what data to make use of and how,
as well as what data not.

86 Of course, there also exist a setters for the creation of POIs which work independent of the crowdsourcing process,
namely using the geoserver’s transactional web feature service.

87 Any submission must be undeniable. Should a client deny responsibility for a submission, the server should be able
to proof that the submission actually originated at the client in question.

88 Any submission must be verifiable. Should a server acknowledge a submission but appeal content or timing of the
submission, the client should be able to proof content as well as timing.

6.2 Crowdfunding Server 91

6.2.4 Indoor Navigation Server Access Network Entity

Figure 6.2.8: The INSANE – a new component

As mentioned earlier, the introduction of a
new intermediatory component, the ‘Indoor
Navigation Server Access Network Entity’
(INSANE), may provide the desired scalabil-
ity by ensuring that any write-access to the
building servers is intercepted and centrally
prepared for storing and processing on the
building servers. Additionally, a backup/re-
dundant storage of the submissions on the
INSANE is to be considered in order to allow
scalable search for submissions on a user or
client device basis, without sending requests
to the building servers. For this purposes,
the INSANE shall consist of a crowdsourcing
driver encapsulating any crowdsourced read-
and write-access oriented towards the server-
side. In cooperation with a security module
for encryption and signature-handling, the
crowdsourcing driver would forward client
related access to a client manager, and build-
ing server related access to a map access
manager. The latter should conduct the ac-
tual call of setter methods on the building
server, while the client manager would conduct any access to stored client data, such as the
user model representing the accessing client. As such accesses should be legally binding and
reproducible as defined for the client access itself, it is necessary to ensure that all involved
components make use of appropriate security modules, to the very least ensuring that all89

communication is signed and encrypted.

Maintaining anonymity of crowdsourcing submissions towards the building servers should be
of imperative nature, as well. Therefore, any write-access to the building servers should not
only be proxied via the INSANE, but also resigned and re-encrypted, ensuring that any submit-
ted data is traceable from the building servers to the INSANE, only. Nevertheless, the INSANE
should store any resigning and/or re-encryption, maintaining a legally binding reproducible trace
of the data submitted. Anyhow, access to the resigning and/or re-encryption data should be lim-
ited to authorised entities, such as the police or crown prosecution service.

Summarising, the INSANE acts as a proxy for crowdsourcing read- and write-access between
clients and building servers, additionally storing all submissions of the clients redundantly. Ob-
viously, the original building data are stored on the building servers; however, any submission
is bound to a set of additional information, etc. the identity of the client submitting, etc. These
additional data must never be stored on the building servers. Further, the INSANE shall be ex-
tensible for future community-related additions, such as a bridge to social communities, offering
an extensible database for additional storage of pseudonyms, email addresses, avatar images,
etc.

For obvious reasons, granted access rights on building servers should be stored associated with
user profiles. Therefore, the INSANE should not only store client related information, but also
lists of granted access rights in order to enable any client to gather information on the granted
rights centrally; hence, maintaining scalability.

As there exist different terms in context of rights management, such as ‘ticket’, ‘capability’, etc,
an unambiguous term should be used to identify granted rights.

89 Especially communication between the clients, the INSANE, and the building servers.

92 Chapter 6 Crowdsourced Optimisation Concept

Definition 6.2.9 – Privilege Pointer

The copy of an ACL-based privilege granted to a user which is distributed from the ACL main-
tainer is a privilege pointer, pointing out access rights the user has on the issuing server.
They are a mere remote copy of the information from the ACL; no rights are granted based
on them.

Definition 6.2.10 – Privilege Pointer Collection

A set of privilege pointers issued for the same user is the privilege pointer collection of that
user. The empty set equals an empty privilege counter collection.

Compliant to Definition 6.2.6, the final decision whether a user is granted access or not, is made
based on the ACL on the building servers. Privilege pointers can be created either by the INSANE
or a building server. Several use cases are possible for the issuing of a new privilege pointer;
they are described in section G.3.1.

All described use cases show a clear demand for means of direct communication between
building servers and the INSANE. Therefore, a corresponding interface shall be envisaged. Fur-
ther, the INSANE should be designed to act as a general access proxy between all users’ clients
and all building servers, as such a general proxy would be able to allow provision of different
data-sets for crowdsourcing participants and deniers. Basically the idea would be to present
crowdsourcing participants with an immediate feedback on their crowdsourcing submissions,
such as instant (partial) map updates, etc. Further details on this design aspect are described in
section 6.3.

6.2.5 Access Control Lists, Privilege Pointers, Resigning and Re-encryption

As seen in the previous subsections, any write-access towards the building servers is proxied
over the INSANE. Hence, a per definitionem distributed collaboration of the INSANE and the
building servers is required. This is especially true for the interaction of access control lists, priv-
ilege pointers and security measures.

Firstly, the access control lists are maintained for each building server on the building servers
themselves. Hence, they are of imperative nature for the local security on the building servers,
warranting a last line of defence against malicious access from users/clients. As such, the ACL
are to be stored on the building server solely and are never to be divulged. Figure 6.2.11 dis-
plays the basic concept:

• Any access to the building server yielding rights diverging from the default access rights
requires identification of the accessing user,

• the identification is looked up in the ACL,
• should the identification be found, the rights as stored in the ACL are granted/denied, and
• should the identification not be found, the default rules at the end of the ACL are applied,

granting/denying default rights.

The described concept considers ‘guest access’ to be an access without provision of an identi-
fication; hence, default access rights apply. Therefore, the maintainer of the access control lists
must know whether guests access is desired or not, and consider corresponding default rules.

Secondly, privilege pointers are being used to give users a scalable means of learning about
their respective rights on the building servers without divulging the ACL. Of course, these privi-
lege pointers must be protected against fraud, which can be accomplished by having each build-
ing server sign the privilege pointers before publishing them. This way, any client can verify that

6.2 Crowdfunding Server 93

Figure 6.2.11: Access Control Lists are located on the building servers

Figure 6.2.12: Capabilities are located on the clients

94 Chapter 6 Crowdsourced Optimisation Concept

the information in the privilege pointers are valid. The concept of the privilege pointers follows
that of capabilities; their basic concept is displayed in Figure 6.2.12.

Commonly, both types of access control are considered equivalent, as they are based on the
interpretation of the resource access matrix as depicted in Figure 6.2.13, but that is untrue as
proven in [MYS03]. Instead of actually suggesting to implement the envisaged object capabili-
ties model introduced in [MYS03], a rather simplified combinatory concept shall be proposed:

• building servers shall use ACL-based access control, with any access decision pending a
corresponding entry in the ACL,

• clients are provided a capability list for the sole purpose of easily (and scalably) ascertain-
ing on which server their user has elevated (or reduced) rights – this is what was defined
as privilege pointer collection in Definition 6.2.7 – and on which not (no privilege pointer
concludes to default access rights on the building server with no corresponding privilege
pointer present), and

• while accessing a building server, the privilege pointers are cross referenced against the
ACL, facilitating recognition of false or outdated privilege pointers.

Figure 6.2.13: Interplay of ACL (blue), capabilities (red) and granted rights (purple)

Thirdly, the security measures mentioned earlier must be accounted for. As emphasised sev-
eral times, anonymity together with reproducibility and security shall be imperative. Hence,
anonymisation must be conducted without loss of the latter two, which is only possible by es-
tablishing a sustained trust path. The easiest way to achieve this is by using a trust network
built on top of signatures and encryption. Of course, signing and encrypting any communication
end-to-end would make the entire concept very easy, but that would turn anonymity ad absur-
dum. Thus, anonymity with trust can only be achieved per aspera ad astra, simplified meaning
that the INSANE as a proxy should establish two separate trust paths, one between client and
the INSANE, and one between the INSANE and building server. Any further subdivision of the
trust path between client and building server shall be inane, as in the end, the client and the
building server only trust each other by trusting the INSANE as a proxy; hence, trust toward the
INSANE may not be compromised.

Comment

Of course, one can argument that the entire concept is keen to be compromised by a man-
in-the-middle attack on the INSANE. For this, another implementation detail should be men-
tioned, without giving the solution within this thesis (refer to ‘Future Work’ in chapter 9):
The use of the Public Key Infrastructure (PKI) for the distribution of public keys is obvious,
so the same infrastructure could be used to distribute anonymous public keys of generated
shortly valid or even one-time key pairs, only known to the users/clients and building servers.
The exchange of the key fingerprints could be conducted over the INSANE using the Diffie-
Hellman algorithm (even though this is difficult as stated earlier), excluding the INSANE from
end-to-end signature (and possibly encryption, if desired). By this, there would exist two lay-
ers of signatures; one over the entire trust path, and one over the separate subpaths.

6.2 Crowdfunding Server 95

The idea of the subdivision of the trust path into to subpaths can be achieved by having the
INSANE as the proxy resign and re-encrypt any communication, while removing any identifica-
tion tokens from the communication at the same time. Simply, when a client desires to write
data to a building server, this data is sent to the INSANE as a proxy. The client uses an encrypted
channel for this communication and signs their data using their private key. After receiving the
data, the INSANE decrypts the data and verifies the signature using the user’s public key. If
the signature is valid, the data is mapped to a new anonymity token, which allows the INSANE
to remap the data to the submitting client and user, should the building server require identifi-
cation of the user or client for any valid reason90, but in general the building server will not be
able to identify the user or client. The data is then signed using the INSANE’s private key and
then sent to the building server via a separate encrypted channel. After receiving the data, the
building server decrypts the data and verifies their validity by checking the signature using the
INSANE’s public key. The data are then stored reproducible on the server. The application flow
is illustrated in Figure 6.2.14.

Figure 6.2.14: Conceptual application flow utilising trust paths

90 For example, the police could be investigating the building server. Should there be a valid legal claim, it is possible to
then identify the contributing user and client by cooperating with the INSANE.

96 Chapter 6 Crowdsourced Optimisation Concept

6.2.6 Database Structure: Building Server amendment and new INSANE

For the combination of all three aspects into a distributed database structure, the structure de-
picted in Figure 6.2.15 shall be proposed.

Before moving the focus on the database structure on the INSANE, the modifications and addi-
tions to the building server database structure shall be focussed.

Of course, any type of information on the building server may be altered or amended, but for
the conceptual introduction of the database structure only modifications/additions (i.e. sub-
missions) to fingerprinting shall be exemplarily. For now, fingerprinting shall be supported for
GSM and WLAN. Additionally, corrections of the positions delivered by the WLAN fingerprint-
ing shall be supported. As all submissions are not supposed to modify the data on the build-
ing server directly, they need to be stored intermediately until they are sifted. For this to hap-
pen, the submissions need to be stored in tables separate from the original data91. Also, access
rights, known submitters and known INSANEs need to be stored.

Of this set of new tables, the ‘AccessRights’ table shall be discussed first. This table maps ac-
cess rights to the ACL of the server. As key the table should firstly present an entry identifica-
tion, as the table may contain several rows for one and the same access group, since access
rights may be invalidated, but remain in the table, while new rights are granted and stored in
the same table. Secondly, the actual ACL entry should be contained in or linked from the table.
Further, validity of the access rights is stored in a from-till manner. As additional column, a de-
scriptive column shall be reserved for comments, etc.

Second addition to the building server database structure shall be the table containing the allo-
cation of users to submitter accounts. As a reminder, one should note that a user’s submitter
identification token is used regardless of the device the user uses. Hence, the submitter-ID al-
lows unique identification of the users without breaking the anonymity principle built earlier in
this thesis. To ensure that each user is associated with corresponding access rights, or – should
there be no association – with default access rights, the table contains the access right identi-
fication besides the submitter-ID. Additionally, for quick blocking of users without having have
to modify the access control list(s) of the server, a boolean column for blocking information is
considered useful92.

Thirdly, a table designed to store information on INSANEs is added. Beside the unique INSANE
identification it contains all necessary information for HTTP communication, namely the host,
port and path to the INSANE. Additionally, an information whether the INSANE supports SSL
encryption or not is present93. Aiming at a faster lookup of the responsible INSANE (refer to
subsection 6.2.7), the geographical region the INSANE claims to be in is stored. Lastly, the pub-
lic key of the INSANE is stored, enabling authentification and encryption.

Lastly, tables containing the actual submissions are designed to hold back the submissions un-
til they are sifted. The main table (‘Submissions’) identifies all submissions by the submission-
ID used by the INSANE handing in the submission. Further, each submission is associated to a
submitter by means of the submitter-ID, which is also the same as the submitter-ID used by the
INSANE handing in the submission. Even though the submission-ID contains the original sub-
mission data, the submission date is stored separately, as it may happen that submissions are
not immediately transmitted from the INSANE to the building server. As different types of sub-
missions contain different data, the main submissions table should not contain the submission
data. Rather, it should contain the type, while separate tables for each type contain the actual

91 In Figure 6.2.15 the tables containing the original data are omitted for reasons of lucidity.
92 It overrides any permission granted by the ACL negatively if a block is set.
93 This shall ease implementation as the support of SSL is not always clearly indicated by the port used for communica-

tion.

6.2 Crowdfunding Server 97

Figure 6.2.15: Conceptual design of MapBiquitous’ crowdsourcing database structure

98 Chapter 6 Crowdsourced Optimisation Concept

submissions. Allowing gathering of submissions made by similar devices or limiting to exactly
one device type, an information on the device type used to create the submission is also stored.

The typed submission tables (‘Submissions_Type’) all follow the same schema. Identifying the
submission via the submission-ID and associating it with a submitter via the submitter-ID, they
store the submission data as present in the submissions without overhead94. Figure 6.2.15 con-
tains three typed submission tables, one for GSM fingerprinting, one for WLAN fingerprinting
and one for corrections to the positions delivered by the WLAN fingerprinting. As one can eas-
ily see, all three tables share the columns for the submission-ID and the submitter-ID, while the
other columns differ.

On the INSANE’s side, a set of seven tables is to be created, including the actual user data,
community aspects, devices used, the submissions, the privilege pointer collections, a table
on the privilege pointers with information on granted rights, and lastly a table on known building
servers.

Before looking at the tables, a convention in anticipation of subsection 6.2.7 shall be made: In
order to support distributed data storage, any ID used shall be created unique over the distribu-
tion.

The first of the tables, the user data table, is designed to be the central reference for user and
client identification. As such, it contains a user-ID column as key, as well as further columns
containing the username and password as defined in Definition 6.2.2 as well as Definition 6.2.4.
Binding the user-account to the submitter-accounts on the building servers, the submitter-ID as
defined in Definition 6.2.5 is also stored. Lastly, a column storing the public keys of the users/-
clients95 is earmarked, and used for the signature procedure described in subsection 6.2.5. – In
accordance to the convention above, it shall be proposed to create the user-ID by calculating the
initial username’s SHA-256 hash. The so created distribution-wide unique user-ID could remain
untouched, even when changing usernames later, or it could be changed as well. In the latter
case, all references using this user-ID must be updated, as well, but it would prevent ‘blocking’
of user-IDs after usernames have been changed96.

Assuming unique differentiation of users’ clients is desired as proposed in subsection 6.2.1,
the table for client-device data is mandatory. It shall be proposed such a table to contain a key
based on the client-ID, as well as a column containing the corresponding user identification. An
additional column for device specifications such as manufacturer, etc. can be allotted and should
be considered, as it is impossible to foresee which information on the clients could prove to be
of interest, later.

Next, the community-aspects table is designed to enable later interaction with social commu-
nities as described in subsection 6.2.1. For the very least, the user-ID should be designed to
act as primary key as well as foreign key. All further columns actually depend on what type of
community aspect is to be implemented. For example, pseudonyms, avatar images, e-mail ad-
dresses, date of birth, etc., could be stored.

Thirdly, the submissions table shall be introduced as a means to easily trace any submission
made to any building server. As described earlier, for legal reasons it may be desirable to be
able to trace all submissions back to the originating user. Hence, a special submission identifica-
tion shall be proposed as key. With respect to the convention above, the submission identifica-
tion should be distribution-wide unique. Hence, it shall be proposed to compute the submission

94 Overhead is considered to be the submission-ID, the submitter-ID, the INSANE-ID of the INSANE handing in the
submission, the device type and the signature over the entire data sent, which are all sent to the building server
alongside the actually wanted submission data.

95 At the time of this thesis’ submission it has not been decided whether the PKI-usage shall be bound on user-level or
client-level.

96 Imagine, user ‘Thomas’ registers an account. The corresponding user-ID is 5dfcf9ef1fb1ecbce32fefe37ae99aff688-
32a7e2ac74f52daa5a1bcd8038118. Should ‘Thomas’ change their username while the user-ID maintains unmodified,
future registration of another user wanting to use the username ‘Thomas’ would result in a user-ID collision.

6.2 Crowdfunding Server 99

identification over the timestamp of the submission, concatenated with the SHA-256 hash over
the entire submission. For example, using the ISO 8601 ‘Zulu time-format’ with the SHA-256
hash of the submission, a possible submission identification could be ‘2012-08-31T17:27:35Z:8-
feae6e9f88642b94937e2ee72d0aa4a9cb947ded00fd0207e93c328cb24dfd5’ for a submission
made on 31 August 2012 at 7:27 PM and 35 seconds Central European Summer Time, where
the contents yield the given SHA-256 hash. Further, the user-ID should be stored in the table,
but not be transmitted to the building servers. But, the stored user-ID allows foreign key asso-
ciation with the submitter-ID in the user data table. This way, the table can be searched by sub-
missions and by users. Further, the original submission – i.e. the variable-value-concatenation
used by the GET/POST HTTP request without the submission – is stored alongside the signa-
ture, allowing alter authentification, confirmation and documented evidence of the submission.
The contents of the submissions without the overhead created by the transmission97 shall be
stored. Allowing quick search for certain types of submissions, it is imperative to store the type
of the submission in an dedicated column. Lastly, associating the submission with the device
the submission originated on, a column is reserved for the client-ID.

Following the submissions table, information on all known building server is stored in a dedi-
cated table (‘BuildingServers’). Each building server is identified by its unique ID as well as their
self proclaimed name. For reasons of searchability of building servers via the directory service,
the name must be unique, too. Further, the contact information for HTTP-based communica-
tion are present in the table, yielding storage of the general access URL of the building server
as well as the required information for crowdsourcing-access, meaning hostname, port and
path to the crowdsourcing methods. Additionally, an information on whether the crowdsourc-
ing methods require SSL access or not is stored93. For reasons of performance and reduction of
directory service usage, the geographic information of the building servers is stored as well (by
means of the longitude and latitude). Concluding the columns of the table, the registration date
and public key of the building servers are stored.

As sixth addition, the privilege pointer collections table shall be used to summarise any user’s
privilege pointers. Beside the key functioning privilege pointer collection ID, the actual list of
privilege pointers shall be stored. As the issuer of the collection may be of interest later98, they
shall be stored alongside the issuing timestamp and a validity or expiration. Lastly, the user-
ID needs to be stored as well, otherwise the collections would not be allocatable to the users
and their clients. – Once again, in accordance to the convention above, the used identification
should be unique distribution-wide.

Finally, the table representing the privilege pointers shall be considered. Besides the key-functi-
oning privilege pointer ID, which is used to identify the entries from the collections table’s side,
the affected building server’s ID as well as the corresponding ACL entry with access level or
rights should be stored. Should the building server pool submitters into groups, the group iden-
tification specified by the building server can be stored. Further, the signature of the privilege
pointer created by the building server allows authenticity checks on the privilege pointer. The
issuing timestamp alongside a validity or expiration needs to be stored in order to limit the va-
lidity of the privilege pointers99. Lastly, an additional descriptive column shall be reserved for
comments, etc. – As true for all other identifications, the used identification used here should
be unique distribution-wide in accordance to the convention above.

97 Meaning without client-ID, password, etc. – Refer to the interface description in Appendix H.
98 They are uninteresting for now, but the possibility of interest at a later time shall not be neglected.
99 This does not affect revocability as building servers may revoke privilege pointers based on the privilege pointer ID at

any time.

100 Chapter 6 Crowdsourced Optimisation Concept

6.2.7 Optimisation towards Scalability: Distributed Hash Tables with DNS

Figure 6.2.16: Extension to the INSANE: DHT

The INSANE
as described in
subsection 6.2.4 has
one major disadvan-
tage: scalability. Even
though all building
data are distributed
over the distinct
building servers, the
INSANE as described
above would cen-
tralise all crowdsourc-
ing communication;
hence, it would han-
dle all clients, their
data, as well as all
submissions. Such a
design is infeasible;
therefore, the simple
but effective solution
of decentralising the INSANE into several INSANEs100 should be pursued. – Now, rather than
simply distributing/mirroring all data over several INSANEs and using a more or less random ac-
cess strategy based on load balancing or so, an organised and well-defined access strategy shall
be implemented. In order to achieve the well-defined access strategy, the use of a distributed
hash table (DHT) for the organisation of the INSANEs shall be proposed. Herein, the term DHT
should follow the classic definition of DHTs, meaning the pursue of specific design goals: au-
tonomous decentralisation101, fault tolerance102 and scalability103. Without actually proposing
to implement this herein presented optimisation to the INSANE component, the design should
be prepared for a future extension in this direction; hence, the implementation of the INSANE
(refer to chapter 7) must respect this.

Comment

Further information on how a DHT is supposed to function in a P2P networks (peer-to-peer
networks) shall not be provided here as it would leave the scope of this thesis dramatically.
The interested reader is referred to e.g. [BKK+03] or similar publications.

The basic idea is very simple: any user accessing an INSANE is allotted to a corresponding hash
area. The easiest way to accomplish this is by simply calculating the hash of the username. The
exemplary interpretation of the hash as a hexadecimal number would allow the distribution of
client accesses into distinct hexadecimal hash areas. These hash areas could be divided with
growing number of INSANEs, e.g. dividing the area [0-f] (i.e. all usernames) could be equally
divided into the hash areas [0-7] and [8-f]. Further, when reaching the boundary of 16 distinct
hash areas, the hash areas could be subdivided, e.g. dividing the hash area [7] into the hash
areas [70-77] and [78-7f]. Using the 256 Bit SHA-256 hash algorithm would allow a maximum
of 2255 ≈ 5.79 · 1076 hash areas104, more than enough to cover all uniquely distinct usernames
that have existed, are existing and will ever exist in a reasonable scope of time.

100Even though the correct plural would be ‘Indoor Navigation Server Access Network Entities’, the more intuitive
‘INSANEs’, maintaining the ‘y’, shall be used.

101The INSANEs collectively form the INSANE distribution without any central coordination.
102The INSANE distribution is reliable even with distinct INSANEs joining, leaving, and/or failing the distribution.
103The INSANE distribution functions efficiently even with numerous clients, INSANEs and building servers.
104The author of this thesis assumes that the term ‘area’ is only valid when at least two values are included in the areas.

2256 would be the maximum amount of usernames supportable by the INSANE distribution.

6.2 Crowdfunding Server 101

In order to have the INSANE distribution be able to quicker react to the fault of a single INSANE,
it shall be proposed that each INSANE be able to handle the hash area for its left/lower and
right/upper neighbour. With one, two or three INSANEs this leads to a very silly distribution with
all of them handling the hash area [0-f]. But, as soon as a fourth INSANE joins the DHT and
the same copy-strategy is followed, after the redistribution time the distribution changes to:

• INSANE 1 is responsible for hash area [0-3], thus handles the hash area [d-7],
• INSANE 2 is responsible for hash area [4-7], thus handles the hash area [0-b],
• INSANE 3 is responsible for hash area [8-b], thus handles the hash area [4-f], and
• INSANE 4 is responsible for hash area [c-f], thus handles the hash area [8-3].

The basic idea is depicted in Figure 6.2.17, where a user (PeterMustermann) finds the primary
INSANE responsible for the hash area ([9-b]) in which the username (hashed identity bbe29c-
00e7661de0fd6ab795f49bda549ffcae5dd63d96d8670b712360528c32) belongs, as well as both
backup INSANEs. Of course, proper interfaces need to be present on each INSANE in order to
guarantee proper DHT-handling; therefore, the importance shall be emphasised.

Figure 6.2.17: Exemplary INSANE distribution with four hash areas; each username has one
primary INSANE and two backups

Now that the basic advantages of DHT-usage have been pointed out, a major disadvantage for
the use within MapBiquitous shall be pointed out: the distribution does not pay any respect to
the users’ geographic positions. – It is desirable to reduce communication distance, hence auto-
matically reducing the communication delay.

The optimisation proposed up to now does not pay any respect to the geographic distribution
of the users. Hence, it is possible that a user accessing the INSANE distribution from San Fran-
cisco, CA (United States of America) finds their responsible INSANE to be an INSANE in Dres-
den, SN (Federal Republic of Germany). Even when considering the distance only as the crow
flies, a total of 9264km must be covered; with an optimistic nominal velocity of propagation
(0.8c) and a package size of 1 Bit, a total of 77.25ms pass before a response is received. But,
as communication lines are not placed following a straight line as the crow flies and transatlantic
cables supposedly only provide a nominal velocity of propagation of 0.6c, a more realistic value
would be 2 ×

(
(9264096m × 1.95) ÷ 194856100 m

s

)
≈ 0.18542s = 185.42ms. This value can be

102 Chapter 6 Crowdsourced Optimisation Concept

easily reproduced when using a personal computer in Dresden and sending a ‘ping’ request to
the IPv4-address 169.229.216.200 (DNS-entry ‘berkeley.edu’). Now, if taking into consideration
that a user is most likely interested in data for a building near their location, and further assum-
ing that the responsible building server is also located there, the delay increases even further
to 144.5ms in the optimistic case, and totally unacceptable 370.84ms if we consider the real-
istic105 numbers. – Obviously, a solution needs to be provided for the geographic localisation
problem.

When considering that IP-addresses are distributed following a well-defined geographic schema
by the Internet Assigned Numbers Authority (IANA) and its regional internet registries (RIR),
namely the African Network Information Centre (AfriNIC), the Asia-Pacific Network Informa-
tion Centre (APNIC), the American Registry for Internet Numbers (ARIN), the Latin America and
Caribbean Network Information Centre (LACNIC) and the Réseaux IP Européens Network Co-
ordination Centre (RIPE NCC)106, it would make sense to use the accessing client’s IP-address
to determine their geographic location107. For this purpose the country-API of hostip.info can be
used, which currently supports the recognition of 247 country-locations108 based on IP-addresses,
and is – in contrast to similar APIs of the RIRs – free to use, even when conducting consecutive
queries in a row.

Finally, when having acquired the geographic location of a client based on its IP-address, it makes
sense to select an INSANE based on this geographic information. Therefore, it shall be pro-
posed to divide the above suggested INSANE distribution into regional hash area distributions.
The contents of the regional distributions should be synchronised regularly, as different INSANEs
in different regions of the world will definitely handle the same hash areas. Further, it shall be
proposed to extend the now divided INSANE distribution with a DNS interface, registering dis-
tribution heads109 that allow easy finding of the next nearest responsible INSANE handling a
username’s hash area corresponding to the accessing client’s user. The basic idea is depicted in
Figure 6.2.18.

The differently coloured arrows in Figure 6.2.18 represent different types of communication.
Red indicates communication from the client to an INSANE, orange the corresponding reply,
purple a query to the country-API of hostip.info, grey the corresponding reply, green a DNS
query, and blue the corresponding DNS-reply. – The example in Figure 6.2.18 presents a client
(hashed identifier bbe...) in the United States of America trying to access INSANE X in the Fed-
eral Republic of Germany in step 1. INSANE X does handle the corresponding hash area ([a-b]),
but recognises that the client is not in the same geographic region after utilising hostip.info’s
country-API in step 2 and receiving the region information ‘US’ in step 3. INSANE X then re-
trieves the regional distribution head in the United States of America utilising the DNS in steps
4 and 5. Rather than replying to the initial request of the client with a confirmation or results
to the corresponding initial request in step 6, INSANE X replies with the connection informa-
tion of the regional distribution head in the United States of America, INSANE A. The client
then repeats its original request in step 7, this time directed at INSANE A. As the hash area of
INSANE A does not cover the hashed identifier of the client, INSANE A directly replies with the
corresponding connection information of INSANE Z in step 8. Finally in step 9, the initial request
of the client is repeated once more, this time directed at the correct INSANE handling the corre-
sponding hash area in the geographic region of the client.

Lastly it should be mentioned, that the proposed concept should have the initially contacted
INSANE handle the client’s request iff the contacted INSANE is the responsible INSANE in the
client’s geographic region handling the hash area containing the hashed username of the client’s

105However realistic it may be when actually limiting the package length to 1 Bit as described earlier...
106The Réseaux IP Européens Network Coordination Centre (RIPE NCC) is responsible for the IPv4 class-B address

ranges 141.30.0.0-141.30.255.255 and 141.76.0.0-141.76.255.255 which the Technical University of Dresden uses.
107The responsible RIR of an IP can be determined by a corresponding entry in a database provided by the IANA, e.g.
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml – Accessed 20. August 2012

108http://www.hostip.info/bulk/countries.html – Accessed 20 August 2012
109However this shall be implemented, it is important that each region is represented by at least one permanently reach-

able INSANE.

6.2 Crowdfunding Server 103

http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xml
http://www.hostip.info/bulk/countries.html

Figure 6.2.18: Exemplary INSANE distribution extended with an DNS interface

104 Chapter 6 Crowdsourced Optimisation Concept

user, or iff the contacted INSANE was not able to retrieve the responsible INSANE via hostip.info’s
country-API and/or DNS, or iff the DNS query results in the information that there is no INSANE
in the geographic region of the client. – This behaviour can of course be optimised by determin-
ing the geographic region containing an INSANE closest to the client’s geographic region, but at
this time the author has no conclusive concept of how to design/implement such an extended
DNS query, except for using DNS’ GeoIP-API, which would bloat the entire design.

6.2.8 Summary

A new component, the Indoor Navigation Server Access Network Entity (INSANE), is added to
the MapBiquitous system in order to handle all crowdsourcing related communication between
the system’s clients and building servers. As such proxy, the INSANE shall guarantee anonymity
of the system’s users and their clients towards the building servers. Hence, encryption and
anonymisation are key aspects of the INSANE’s operation. Corresponding required modifica-
tions to the building servers are limited to submissions handling and ACL management, while
modifications to the clients require changeover of established interfaces as well as creation of
new interfaces.

As a tribute to scalability, amendments of the INSANE in shape of a distributed hash table ex-
tended by the Domain Name System contribute to user access handling while paying respect to
the regional distribution of the users and INSANEs within the MapBiquitous system.

All of the concepts and ideas introduced in this section are summarised in Figure 6.2.19, which
– in contrast to Figure 6.2.1 – displays the desired state of the MapBiquitous system by the
time this thesis is going to be handed in for review.

6.3 INTERPLAY OF CLIENT AND SERVER

The interplay of the crowdsourcing client as introduced in section 6.1 and the crowdfunding
server as introduced in section 6.2 shall be expected to be free of malicious intent. Hence, an
optimistic communication and interplay approach shall be followed. The reason for this concep-
tual design decision shall be depicted in the following example.

When present in a building, the client normally needs to load the ichnography, the layers as well
as POIs and WLAN-fingerprints. Should there be any information the user deems wrong, they
would suggest corrections. This is the basic idea of the crowdsourcing concept. Additionally,
the user expects to be informed whether their submission was accepted so that the same cor-
rection will not be resubmitted; ideally, corrections are displayed in the building plan. There are
three ways to achieve this. Firstly, the client could store any corrections in its local storage and
replace outdated data from the server with its own corrections. As soon as the server has up-
dated its data, the client requires no more replacement. Unfortunately, this concept does not
work, as the server could either correct data, or add new data. Should there be several sub-
missions from different users concerning different information, it is impossible for the client to
determine which data is actually updated and corresponds to the stored submissions. So this
solution is not feasible. Secondly, the client could ask the INSANE as the proxy that handled
the submission towards the building server to help by gathering all submissions of the client
and querying the building server what intermediate results the submissions have triggered. Un-
fortunately, an anonymity problem arises, as the initial direct loading of data from the building
server inevitably leads to exposing the clients IP-address to the building server. As soon as the
INSANE then queries all submissions of the client, which as a reminder were intended to be
anonymous (refer to subsection 6.2.5), the building server can link the IP to the submissions
due to the temporal correlation of the requests. Should the client be in the situation of using the

6.3 Interplay of Client and Server 105

Figure 6.2.19: Conceptual design of MapBiquitous’ crowdsourcing architecture as planed by
15 October 2012; the greyed components are prepared and work as stubs, but remain to be
implemented with proper functionality

106 Chapter 6 Crowdsourced Optimisation Concept

Figure 6.3.1: An exemplary sequence leading to de-anonymisation as well as a communication
bottleneck

same IP over longer periods of time, e.g. with a long DHCP lease time or even static IP, usage
pattern analysis may lead to identification of the user behind the client. Besides this anonymity
problem, a communication bottleneck is to be expected at the interface between the INSANE
and the building server. The problems with the second approach are depicted in Figure 6.3.1.

The third solution envisages that all communication is proxied via an INSANE for crowdsourcing-
participants and that the building servers only return a submitters own contributions as long as
they have not been sifted, i.e. integrated into the general dataset. This way neither the deanonymi-
sation problem nor the communication bottleneck occur. Further, any client could be allowed to
user the proxied communication path via INSANEs in order to conceal their IP-address from the
building servers. The concept is depicted in Figure 6.3.2.

Comparing them, the third solutions is the logical choice for implementation. Having this de-
cided, a closer look at how clients, INSANEs and building servers communicate is profitable.
Using HTTP-based communication limited to POST and GET requests allows usage of existing
infrastructures while at the same time no special preparations to firewalls and other network
components are required110. Taking this idea even a level lower, usage of XML or other special
description languages can be limited to actual content, e.g. a WFS-reply. All other information,
especially on success or failure of method calls, can be communicated by the means of HTTP
itself, i.e. by RFC 2616 (Section 10) status codes, such as ‘HTTP/1.1 202 Accepted’, ‘HTTP/1.1
404 Not Found’, etc. Using such low level means of communication, the focus should be shifted
to POST requests, as they transport variables within the HTTP header in contrast to within the
URL for GET requests. As encryption is required, encrypting a GET request with the means
of HTTPs would be meaningless as the variables and their contents remain in plain-text in the
URL. Wanting to encrypt them would require a crafty URL-encryption. In contrast, encrypting
POST requests with the means of HTTPs is actually very simple: no additional effort is required
as HTTPs encrypts the header alongside the HTTP packet’s body.

Analysing the aspect of authenticated communication, the idea of using signatures for the re-
quests and replies seems rather simple, but it is effective. But, one important condition must
be met: all participants must agree on which information is to be signed, and in which way. For
this, a very simple communication protocol shall be defined, which can be found in the following
subsection.
110Of course, this is only true as long as the clients, INSANEs and building servers refrain from using exotic ports.

6.3 Interplay of Client and Server 107

Figure 6.3.2: An exemplary sequence solving the de-anonymisation and communication bottle-
neck problems

6.3.1 Extensible MapBiquitous Crowdsourcing Communication Protocol

The communication between MapBiquitous’ clients, INSANEs, building servers and directory
servers is standard HTTP communication, either encrypted or not. Only a subset of the status
codes defined in RFC 2616 (Section 10) is allowed, completed by status code 424 from RFC 4918
(Section 11). Even though the denotation of the status codes is basically the same, the status
codes are returned under deviating conditions:

• HTTP/1.1 200 OK
Successful method call with expected results. The body of the HTTP packet may be empty
or contain the actual result.

• HTTP/1.1 201 Created
Successful method call with expected results. The body of the HTTP packet should be
empty, but may contain feedback.

• HTTP/1.1 202 Accepted
Successful method call. The submitted data was accepted, but processing has not fin-
ished, yet. The body of the HTTP packet should be empty, but may contain feedback.

• HTTP/1.1 302 Found
The resource in demand was found. The body of the HTTP packet must contain the loca-
tion of the resource.

• HTTP/1.1 303 See Other
The request must be repeated on another host. The body of the HTTP packet must con-
tain either a reason or the location of the proper host.

• HTTP/1.1 400 Bad Request
The method call was unsuccessful due to malformed or incomplete variables, or the client
and host use different versions of the extensible MapBiquitous crowdsourcing communi-
cation protocol. The body of the HTTP packet may be empty or contain error descriptions.
A 400 error must be dealt with by the client, not the host.

108 Chapter 6 Crowdsourced Optimisation Concept

• HTTP/1.1 403 Forbidden
Execution of the method call was refused due to insufficient access right, an invalid sig-
nature or execution of the method would overwrite an existing resource. The body of the
HTTP packet may be empty or contain error descriptions.

• HTTP/1.1 404 Not Found
The resource in demand was not found or the execution of the method returned an empty
result. The body of the HTTP packet should be empty, but may contain error descriptions
or the location of a host that may be able to return a different result.

• HTTP/1.1 409 Conflict
The method call ended with the host being in a state of conflict. This status may only be
returned iff the resource or the computations result is ambivalent, i.e. the host has to (ran-
domly) select one of them for the reply. The body of the HTTP packet should contain ex-
actly one of the possible results.

• HTTP/1.1 424 Failed Dependency
Execution of the method call was denied due to unfulfilled dependencies. This status
must be returned iff the method has preconditions that need to be met, e.g. registration
of the client before calling the method on the host. The body of the HTTP packet may be
empty or contain error descriptions.

• HTTP/1.1 500 Internal Server Error
Procedure call or execution of the method call resulted in an unrecoverable error on the
host. This error must be returned iff the host encounters missing modules, code errors,
database errors or obviously malformed data. The body of the HTTP packet must contain
information on the error. Should the error be expected to last longer, an estimate on the
recovery time should be returned, as well.

• HTTP/1.1 501 Not Implemented
The method call could not be handled since the method is not implemented on the host.
This status must be returned iff the method is implemented as a stub on the host. The
body of the HTTP packet may be empty or contain the location of a host that may be able
to execute the method call.

• HTTP/1.1 502 Bad Gateway
Execution of the method call depends on communication to another entity. However, the
host encountered a communication error when contacting the entity. The body of the
HTTP packet should contain an error description. Additionally, information on the unreach-
able/erroneous entity may be provided.

• HTTP/1.1 503 Service Unavailable
The method call could not be handled since the method does not exist on the host. The
body of the HTTP packet should be empty, but it may contain error descriptions.

Besides the status codes, additional header fields are stipulated:

• Timestamp
The time the packet and the corresponding signature were created. The timestamp must
be a ISO 8601 (Section 4.3.2) UTC timestamp (‘Zulu’-format), e.g. ‘2012-10-06T16:17:14Z’.

• Signature
The signature over the body of the HTTP packet and the ‘Timestamp’ header field. This
header field is only to be used for replies, never for a request.

• Result base
The base of the method execution result. Its value may be either ‘anonymous’ for a gen-
eral result or a submitter-ID for a personalised result. This header field is only to be set by
INSANEs and building servers.

• Result correction
The submission(s) a result deviating from the general result (available to everybody) is
based on. Its value must be a comma-separated list of submission-IDs or exactly on sub-
mission-ID. This header field is only to be set by INSANEs and building servers and it may
only be set iff the ‘Result base’ header field is set.

6.3 Interplay of Client and Server 109

The body of the HTTP packet transmitted may contain any data that is feasible for HTTP commu-
nication, especially plain-text or XML data.

Several time now, signatures were mentioned. These signatures shall authenticate/validate the
contents of the HTTP packets and make modifications and/or unauthorised packets recognis-
able. The signature should be calculated:

• Requests:
Over all POST/GET variables except for the signature itself. For this, all variables and their
values are concatenated using the default HTTP variable header-notation, e.g.
‘variable1=value1&variable2=value2&...’
The order of the variables is imperative; therefore, this communication protocol demands
that client and host use the same order when calculating the signature. The order must be
defined at implementation time.

• Replies:
Over the entire body of the HTTP packet concatenated with the ‘Timestamp’ header field
similar to the default HTTP variable header-notation, but allowing two or more consecutive
line breaks, e.g. ‘result=anXMLentitiy×tamp=2012-10-06T16:41:22Z’
The order is imperative, demanding for the result to always be placed before the time-
stamp.

While the signatures calculated for requests are to be added to the GET/POST request variables
as ‘&signature=’ followed by the signature111, the signatures calculated for replies are to be
added to the header using the above mentioned ‘Signature’ header field.

6.4 CONCLUSION

The crowdsourcing architecture designed follows the intuitive approach of separating the crowd
and the crowdfunders, dividing the architecture into a client-side and a server-side. This is com-
patible with the existing MapBiquitous architecture as it is divided in the same way. Effort was
focused on a distributed, reliable and scalable architecture that supports the existing functions
as well as new functions (i.e. crowdsourcing). For this, the client and server are extended by
new crowdsourcing modules. Additionally a proxy – the INSANE – is introduced into the archi-
tecture, basically relaying all crowdsourcing-related communication between the clients and the
building servers. In standard networks, the architecture’s design requires no modifications to
firewalls, etc. as the entire communication is HTTP-based, using mainly POST and a few GET
requests via HTTP default ports 80 (without encryption) and 443 (with encryption). Further, only
standard HTTP 1.1 status codes as defined in RFC 2616 (Section 10) and RFC 4918 (Section 11)
are used. The building server component as well as the INSANE are designed to be extensible
by being modularised. By this, the architecture requires no modification for different types of
crowdsourced information, as it is sufficient to simply deploy additional communication and ap-
plication logic modules into the INSANEs and building servers, as well as creating new database
tables into the existing building server databases for each newly to be supported type of crowd-
sourcing. Further, the proxy-based communication is decoupled from single network instances
as the architecture envisages at least threefold redundancy. From the client’s vantage point, the
remaining single point of failure remains to be the building server. Even though not discussed
in this conceptual chapter, this problem can be solved by introducing redundancy to the building
servers, too.

111Note that GET as well as POST use the same variable notation. They only differ in the placement of the variables,
having them in the URL for GET, and in the header for POST.

110 Chapter 6 Crowdsourced Optimisation Concept

7 PROOF OF CONCEPT WITHIN
MAPBIQUITOUS

„Wer nicht genau weiß, wohin er will, braucht sich nicht zu wundern, wenn er
ganz wo anders ankommt.“

Rober F. Mager

112 Chapter 7 Proof of Concept within MapBiquitous

PROOF OF CONCEPT WITHIN MAPBIQUITOUS

Comment

Before actually starting into this chapter, it shall be noted that the aspects considered within
this chapter are limited to the INSANE and building server crowdsourcing module and their
inclining system modifications. Any aspects corresponding to the client and/or modifications
of the same will not be given herein. The interested reader is requested to kindly refer to
[Bom12].

Sometimes one finds the actual implementation to derive from the documentation or accompa-
nying papers, theses, etc. Sadly, this is also the case for the MapBiquitous project. There exists
a variety of assignment papers and theses dealing with the MapBiquitous project, each one of
them praising their concept and the accompanying implementation. This does not surprise; of
course a student is keen to present their own work in the best light in order to reach the best
possible rating. Unfortunately, the reality of implementations proves to deviate from the highly
praised theory. Exemplarily, the implementation of the fingerprinting server shall be analysed:
The corresponding concept in the assignment paper claims the presence of a fingerprinting
module on each building server [Gru12], while in rality, there is one fingerprinting service run-
ning for all building servers. Even the concept of several building servers is not implemented,
as one server112 simulates the existence of diverse building servers, while they actually are only
one variable to be set when accessing the web feature service (WFS) of the running geoserver.
Nevertheless, this still allows the simulation of several building servers using different access
URLs113, while the mentioned fingerprinting service handles fingerprints on a global level, only
storing in which building the fingerprint was generated.

As the author does not wish to run riot by ranting over the unfortunate deviation of concept
and implementation, a short but far from exhaustive list of problems shall be presented before
showing up how problems were solved or circumvented. Following that, a review of deviations
from the concept developed in section 6.2 shall be presented, concluding with an architecture
diagram of the actual implementation. In this spirit, the author of this thesis is not superior to
their predecessors, but at least the author wishes to have the courage to point out his own mis-
takes, enabling potential successors an easier access to ‘the reality of MapBiquitous’.

7.1 PROBLEMS

In order to have an approach to the diverse problems that occurred during the creation of this
thesis, the problems shall be presented sorted by their impact on the implementation in as-
cending order.

First, the coordination of a team is always challenging, even if the team only consists of two
members and a supervisor. Luckily, the cooperation of the authors of this thesis and [Bom12]
was fruitful. Nevertheless, the definition of the required interfaces between client side and
server side proved to be challenging. Especially, the architecture concept had to be revised sev-
eral times when discussing interfaces, as use cases had to be modified after discovering an er-
ror, etc. As an example, the abandoning of total anonymity of the clients toward the building
servers and replacing it with an identity protection mechanism just one week before the evalua-
tion and three weeks before the submission of this thesis was very challenging.

Next, the shortened processing time of this thesis lead to a submission deadline in the middle
of October, which is very unpleasant for exhaustive user tests in the group of students, as such

112CAmpus Range LOcation System – https://carlos.inf.tu-dresden.de
113Differing in the mentioned variable.

7.1 Problems 113

https://carlos.inf.tu-dresden.de

test would have to be conducted at the end of September in order to allow evaluation before
the submission of the thesis. Nevertheless, this problem could be shifted to the client side,
making it challenging for Gerd Bombach, while the server side evaluation could focussed on
scalability and performance aspects.

The next problem originated in the use of the Apache Maven Eclipse plugin, leading to unus-
ability of the Eclipse development framework. As the fingerprinting service explicitly required
Apache Maven, modifications to the fingerprinting service were not possible without rendering
all other projects in the workspace unusable. The obvious solution of using separate workspaces
was not applicable as modifications to Eclipse itself were required. Hence, two separate instal-
lations of Eclipse would have been required, which proved to be infeasible with respect to avail-
able resources and time required to handle them on separate devices.

The database structures used proved to be very challenging. It took little over a month until
the capabilities of the used Postgres database with respect to automated coordinate transfor-
mations were clear. Additionally, the mapping of WGS-84 coordinates to SRID-4326 was nei-
ther documented nor hinted as default behaviour. After having figured this out, parts of the
dataset presented themselves as not obliged to this mapping, using different mappings, mak-
ing inter dataset transitions not intuitively possible. In detail, the database ‘MapBiquitous’ uses
SRID-4326 only for the ‘POI’ table, while ‘point_of_interest’ table uses SRID-‘-1’, ‘MapBiquitous-
Neu’’s tables all use SRID-‘-1’ with the exception of the ‘POI’ table which uses SRID-4326, and
‘MapBiquitous-Navigation’’s table also mainly use SRID-4326 with the exception of the ‘Mainen-
trance’ table which uses SRID-‘-1’.

The previous problem automatically leads to one of the most difficult to handle problems: There
existed a variety of databases and tables, of which is not actually clear which is used and which
not. For example, the ‘POI’ table of the ‘MapBiquitous’ database provided point of interest data,
whereas all other geoserver data were provided by the ‘MapBiquitous-Neu’ database. Further,
the databases themselves were not clearly structured as provided in the corresponding con-
cepts. Basically, one Postgres database provided for all building servers. In the end, two month
(!) had to be invested into separating the entries of all tables into distinct building server data-
bases, which of course, still run on the same database server. But, at least now the building
servers’ data are logically separated within the database server.

In conjunction with the efforts mentioned in the (partial) solution of the previous problem, the
used GeoServer 2.1.3114 denied any form of easy modification. Neither could the features be re-
defined properly even when the student who initially set up the server tried to help nor could
the underlying data structures be modified (i.e. in the database directly) without rendering the
geoserver unusable. Further, the server had and still has an irreproducible memory consump-
tion problem, rendering the server unreachable after some time, sometime crashing the entire
underlying Tomcat server, or once even the entire virtual machine within which the CARLOS
server operates. Sadly, this problem could not be solved; only the time between consecutive
crashes could be reduced by removing unnecessary components from the virtual machine and
enlarging Tomcat’s memory stack.

For nearly two and a half month the source codes of some server components were not avail-
able, pushing the actual review of existing code wide into the conception of the crowdsourcing
architecture. When the sources became available and were finally reviewed, modifications to
the conceived crowdsourcing concept were inevitable in order to pay respect to components
that could either not be modified in the limited time in order to adhere to required architecture
modification, or remain unmodifiable due to missing sources. Unfortunately, after some time
an important part of previous documentation, namely the Wiki containing information about
MapBiquitous’ second iteration, ceased to be reachable or simply did not exist any longer; thus,
some information turned out to be no longer accessible.

114The used GeoServer project is a transactional J2EE-implementation of the OGC Web Feature Server specification and
the OGC Web Coverage Server specification.

114 Chapter 7 Proof of Concept within MapBiquitous

Server components ought to be deprecated proved to be actually still in use. The MS4W server
on the virtualised CARLOS shall provide as an example. While MS4W was used in MapBiqui-
tous’ second iteration, the current third iteration does not use MS4W. At least that is what the
concept states, so the MS4W server should be removable from the virtual machine. Neverthe-
less, after deactivating the MS4W server the fingerprinting service and parts of the geoserver
functionality unexpectedly terminated. A code review (as far as possible) and extensive search
in the old documentation of MapBiquitous’ second iteration finally hinted that parts of MS4W
were still required for CGI calls, etc. This behaviour was not documented in the concept of Map-
Biquitous’ third iteration. In order to save system resources, the deactivation and removal of the
MS4W server was desirable, especially as the proof-of-concept implementations of the INSANE
and the building server crowdsourcing modules were supposed to be deployed into a very basic
Apache httpd server. In the end, these deployments were conducted into the running MS4W
server’s httpd service. In this spirit, this problem is still not solved, only circumvented.

Finally, the last and most pressing problem in the end proved to be time. This is not to be mis-
taken with the time problem arisen due to the shortened processing time. The definition of the
required crowdsourcing taxonomy as well as the concept of the crowdsourced MapBiquitous
were conceived within one month, and implementation was ready to go. But, due to the sum
of all previously mentioned problems, a guerrilla warfare against smaller and larger problems
had to be conducted, slowly shifting the focus from crowdsourcing itself to providing a crowd-
sourcing architecture and finally to fixing all kinds of existing issues. In the end, the three month
planned for implementation were fully filled with issues, to which the implementation came on
top, reducing testing and evaluation time to a minimum of three weeks by the time these lines
are being written. It is foreseeable, that the finalisation of this thesis will overlap with the evalu-
ation in the last week before the thesis’ submission. Sadly, in retrospective the author sees no
way how the time could have been planned more efficiently, except by having all unnecessary
problems (missing source codes, database structure problems, implementations deviating from
concepts, etc.) not occur. Regrettably, those problems could not be influenced.

7.2 DEVIATIONS FROM THE CONCEPT

The most pressing deviation from the concept conceived within this thesis definitely is the use
of only one actual server pretending to be several building servers. Further, this same server
is used for the deployment of at least one INSANE instance, while the concept clearly sees
INSANEs and building servers on separate servers. Lacking the resources to set up separate
physical or virtual machines for each architecture component, the building servers had to remain
on ‘CARLOS’, but that is not a problem. In fact, maintainers of several buildings should be al-
lowed to share the same physical or virtual server in order to save resources. It is only impera-
tive for the different building server datasets to be accessible under clearly distinct access inter-
faces; in the simplest case differing URLs. The no-go in the described deviation is the presence
of an INSANE on the building server. The concept clearly states anonymity of clients towards
the building server as a design goal (goal 2d), but having the INSANE and a building server on
the same physical or virtual machine undercuts anonymity.

The concept also sees the directory server unmodified as any INSANE should – iff necessary –
use the default functional range of the directory server. Nevertheless, the definition of the inter-
faces as well as the corresponding implementation of the INSANE’s functionality has proven the
need for INSANEs to be able to lookup building servers not by their geographic location115, but
also by their identity/alias. Hence, the directory server was modified and amended with an alias
search interface. The same applies for the reverse case of building servers having have to look
up an INSANE. Further, it should be noted that the original directory server could not be eas-
ily amended with the additional functionality due to unconceivable errors in the original source

115The WGS-84 coordinate, or to be more precise, their location between minimum and maximum longitudes and lati-
tudes.

7.2 Deviations from the Concept 115

code; hence, a replacement directory server implementing the original and the new search ca-
pabilities was set up. However, the replacement lacks all setter interfaces, e.g. it is not possible
to modify access URLS, etc. For those functions, the original directory server is still available
and can be used, as both directory servers share the same database.

With respect to security, the concept envisages usage of HTTPs for all communication between
the clients, INSANEs and building servers. Due to problems with HTTPs-implementation, espe-
cially HTTPs connection handling in Android and certificate management in PHP, HTTPs is deac-
tivated even though supported on server side. Hence, the communication is unencrypted in the
moment.

As the concept was conceived before the majority of the problems described in the previous
section occurred, the concept envisages a clearly modularised building server. The implemen-
tation reality still forces a dedicated fingerprinting service and web feature service handling all
buildings. Solely the routing and crowdsourcing components are actually deployed per building.
In the end, the building server crowdsourcing module (BSCSM) was introduced into the archi-
tecture as a new component. This component is designed to act as a proxy between INSANEs
and the existing building server components, virtually concealing them behind one external
interface. Basically, the BSCSM is now used as the sole interface for crowdsourcing access,
disallowing direct access to the fingerprinting server and being the only interface with setter-
capabilities. The BSCSM recycles the majority of the source code of the INSANE.

A rough overview of the actual current architecture of MapBiquitous is depicted in Figure 7.2.1.

Figure 7.2.1: Actual architecture of MapBiquitous as implemented by 15 October 2012

7.3 THE IMPLEMENTATION

The components newly introduced into the architecture in section 6.2 abstract away from actual
implementation details, which – of course – is good, as the implementation itself is proof for

116 Chapter 7 Proof of Concept within MapBiquitous

the realisability of the concept. Therefore, a few details of the actual implementation shall be
given/discussed here. For reference, the implemented source code is available on the Compact
Disc (CD-ROM) accompanying this thesis.

The most import details to point out must definitely be the choice of programming language.
All new components, namely the INSANE, the BSCSM as well as the replacement directory
server were implemented in PHP. This of course limits deployment of the components to web
servers running PHP; however, the entire implementation refrains from system calls, making
the components usable on any operating system underlying the web server.

Next, any data to be stored either on an INSANE or BSCSM requires a MySQL database to be
available for data storage. This is already true for the original directory server, so this cannot be
considered a constraint for the replacement directory server.

Additional constraints emerged during implementation, e.g. the handling of JSON116 represen-
tations of data structures is rather intuitive in PHP when using the encode_json($construct),
decode_json($json) and last_json_error() methods. Unfortunately, last_json_error()
requires PHP 5.3.0 or newer, which was available on the XAMPP testserver, but not on the ac-
tual distribution servers. Therefore, error-handling had to be reduced from ‘actual JSON errors’
that would have helped to identify errors in the JSON strings to ‘valid JSON or not’. But still,
encode_json($construct), decode_json($json) require PHP 5.2.0 or newer, so the alternative
would have been to implemented own JSON handlers. As this would have been to time con-
suming, the decision was made to set a minimum requirement to the servers later operating as
INSANEs and BSCSMs of PHP 5.2.0 or newer. However, in order to not fully give up support of
PHP 5.1.* or older, the JSON-handling was outsourced into a JSON_Handler.php module117, al-
lowing easy replacement of the isJSON($string), fromJSON($json) and toJSON($construct)
methods. Lastly, the actual functionality of the encapsulated encode_json($construct) and
decode_json($json) methods is either provided by PHP (PHP 5.2.0 or newer), or the free and
open-source JSON_Library.php118. Also, HTTP-based communication between the INSANE
and the BSCSM, the BSCSM and the fingerprinting server as well as the communication be-
tween the BSCSM and the geoserver proved to be challenging. Usage of PHP modules such
as ‘cURL’119 was to be prevented since it is not foreseeable which PHP modules are available
on target systems and which not. Therefore, a socket-based communication using PHP’s fopen
function was implemented in the HTTP_Requests.php handler module, requiring no additional
PHP modules. The module is closer described in in Programme E.2.1.

Another interesting aspect is the implementation strategy and which effects it had on design
decisions as well as server requirements.

First, the actual implementation of the concept conceived in section 6.2 proved to be challeng-
ing as the concept could not always be implemented as thought (details were presented in
section 7.2), and problems through no fault of one’s own postponed implementation ideas, some-
times rendering them unimplementable (details were presented in section 7.1). This also con-
tributed to the decision to choose PHP over Java as the language to implement the INSANE
and the BSCSM, especially as quick and dirty prototyping was more accessible to the author
via PHP with a XAMPP installation running on localhost. Further, memory consumption120 was
considered in the earliest stages of prototyping. The memory consumption of object-oriented
PHP presented itself to be much higher compared to not object-oriented (structured) PHP121.
This can be explained by the RESTfull request/reply philosophy of the communication at hand:

• Any communication between clients and INSANEs is finalised with one request and one
reply, and

116JavaScript Object Notation
117The module can be found in section E.4.
119http://php.net/manual/en/book.curl.php – Accessed 4 October 2012
120In means of Random Access Memory rather than harddisk space.
121A factor of 3 could be measured.

7.3 The Implementation 117

http://php.net/manual/en/book.curl.php

• most of the communication between INSANEs and building servers is finalised with one
request and one reply.

Therefore, no demand to keep states, objects, etc. over several requests and/or replies arises,
especially as all objects created when handling a request are destroyed after finishing the com-
putation of the reply. Even further, the computation strategy followed is monotonic linear, though
it is not strictly monotonic linear as WHILE, FOR and FOREACH loops are used for countable, not
infinite repetition of code segments; hence, object-orientation would have only created unnec-
essary overhead such as object control headers, object reference pointers, etc. Exemplarily, the
basic computation flow of a WFS request on a building server is illustrated in Figure 7.3.1. In
prevalent code classification, the strategy followed is classified as imperative structured pro-
gramming with modularised includes122.

Incidentally, modularising the INSANE as well as the building server crowdsourcing module
(BSCSM) source code while maintaining ‘human readability’ of the methods offered required
some crafty definitions of scanable syntax. In the end, each method can be automatically loaded
into the running INSANE or BSCSM by strictly following the newly created definition block syn-
tax, as it is completely parsable123 by PHP. The structure is rather simple, relying on keywords
such as ‘DEFINITION BLOCK’ or ‘@return’, delimiters such as ‘||’ or ‘|||’, as well as PHP’s own
serialisation-syntax, allowing automated usage of PHP’s serialize and deserialize functions.
An exemplary method definition block using the defined syntax is presented in section E.5 of
the supplementary.

As the observing reader may have noticed, Figure 7.3.1 has forestalled the use of HTTP-based
communication. All newly introduced components communicate solely via HTTP and/or HTTPs,
exactly as it was conceived in section 6.3. Further, complex data structures are encoded using
JSON representations, allowing the transmission of complex data structures within the POST
variable headers of the HTTP packets. The constraints emerging from this were discussed ear-
lier.

7.4 CONCLUSION

The proof-of-concept implementation follows the concept conceived for the most part, how-
ever deviates in details that could only be uncovered by actually implementing the concept. The
directory server was replaced by one allowing lookup of building server as well as indoor navi-
gation access network entities (INSANEs) by geographical position/area and name/identity. All
existing building server components were left untouched and virtually concealed by introducing
a building server crowdsourcing module (BSCSM) as a proxy interface on the building servers.
Both conceived access paths can be found in the implementation, having the crowdsourcing ac-
cess path span from the client over the INSANE to the BSCSM into the building server, the non-
crowdsourcing access path connect the client directly to the getter interfaces124 of the building
server.

PHP was chosen as the implementation language, following the ‘imperative structured program-
ming with modularised includes’ programming paradigm in order to reduce memory consump-
tion as good as possible. This choice was also enforced by diverse problems that had occured,
disallowed modification of existing components and were very time consuming while remaining
unsolvable.
122The ‘modularised includes’-part originates in the fact that the code is organised into modules which are included on

demand.
123There are controversial discussions dealing with the existence of the noun ‘parsability’ and the corresponding adjec-

tive ‘parsable’ (or ‘parseable’). However, the author of this thesis assumed the adjective to exist. Should it not exist,
the meaning defined by Noam Chomsky shall be valid: ‘The ability to assign a structural analysis to sentence’.

124E.g. the WFS or the positioning method of the fingerprinting server.

118 Chapter 7 Proof of Concept within MapBiquitous

Figure 7.3.1: Application flow of a WFS-request in a building server crowdsourcing module.

7.4 Conclusion 119

Intercommunication with the MapBiquitous clients is guaranteed by having all communication
base on HTTP. Larger chunks of data are encoded into JSON-strings, allowing best possible125

compatibility of the Java-based application logic on the client running under the Android operat-
ing system and the PHP-based application logic running on the INSANEs.

125Currently that is.

120 Chapter 7 Proof of Concept within MapBiquitous

8 EVALUATION

‘When I examine myself and my methods of thought, I come to the conclusion
that the gift of fantasy has meant more to me than any talent for abstract, positive
thinking.’

Albert Einstein

122 Chapter 8 Evaluation

EVALUATION

Before actually starting into this chapter, it shall be noted that the aspects considered within this
chapter are limited to the INSANE and building server crowdsourcing module, their inclining sys-
tem modifications and their communication with each other as well as the clients. Any aspects
corresponding to modifications of the client shall not be given herein; the interested reader is
requested to kindly refer to [Bom12].

The methods used to evaluate the results can of course only be applied to measurable and com-
parable aspects of the concept (and implementation) introduced within this thesis. Therefore,
the following aspects shall be evaluated:

1. Conformity of the implementation to the design goals.
2. Comparison of old and new communication.
3. Resource use and communication load compared to ‘default websites’.
4. Estimation of effort for a real setting compared to the laboratory condition results.

Each aspect will be evaluated in the following sections, beginning with an emphasis on the first
two aspects. The third and fourth aspect are evaluated conjointly in section 8.3.

8.1 CONFORMITY OF THE IMPLEMENTATION TO THE DESIGN GOALS

On a superficial level, the design goals defined in section 5.3 are met with the exception of
goal 3e, but that is not surprising, as the implementation was focussed on actually complying to
all design goals in the best possible manner while managing the implementation in the limited
processing time given. Therefore, the deliberate decision not to define and implement encryp-
tion was made. Additionally, weekly meetings of the implementing students and their supervi-
sor lead to goal-oriented concept design and implementation. Therefore, the result summarised
in Table 8.1.1 are neither surprising nor unexplainable.

Table 8.1.1: Results with respect to the design goals

Goal Result Comment

1 Possibility to not participate in the crowdsourcing.

1a The system shall remain
usable as to now.

√
Access not related to crowdsourcing
remains untouched. (by choice, clients
may access the building servers via
HTTPs rather than HTTP)

1b Are modifications inevitable,
they shall be as minimal as
possible.

√
—

1c Only basic data shall be
accessible.

√
Crowdsourcing data are stored within
a separate module; hence, using a
non-crowdsourced getter will not
allow access to crowdsourced data.

·

2 Choice to participate in the crowdsourcing.

continued on next page{

8.1 Conformity of the Implementation to the Design Goals 123

{ continued from previous page

Goal Result Comment

2a Legal boundaries (e.g.
BDSG) are to be adhered.

(√)
In the moment there exists a prob-
lem with the HTTPs implementation.
{ Refer to goal 3d.

2b Aware crowdsourcing (A∗C)
with crowd awareness shall
be supported.

√
Position corrections are supported.

2c U∗C shall not be obstructed.
√

Different crowdsourcing methods are
supported by modularisation of the
system.

2d Participation shall be anony-
mous against the crowd-
funding building servers.

(√)
Users handled by the INSANE set up
on the ‘CARLOS’ server are destined
not to be anonymous, as ‘CARLOS’
acs as building server for all currently
available buildings; hence, the ad-
ministrator of ‘CARLOS’ can easily
deanonymise all users handled by the
INSANE running on ‘CARLOS’. Only
users using the alternative INSANEs
set up for testing126 are currently
anonymous, but this is owing the
fact that the DHT-distribution of the
INSANEs is not functional, yet.

2e Submissions shall be dr-
erable.

√
With the current database structure,
any submission can be deleted, re-
moved, erased and revoked.

2f Submissions shall only be
drerable for a defined time.

(√)
Current implementation drers any
submission as soon as it is sifted,
otherwise drering is possible without
time constraints. However, the sub-
missions are stored with their date
of submissions, so basically a time
constraint can be implemented using
the stored date of submission.

2g Submissions shall be re-
viewable.

(√)
Database structure is prepared for
reviewing, but reviewing is not imple-
mented.

2h Submissions shall be
siftable.

(√)
Database structure is prepared for
sifting, but sifting is not implemented.

·

3 The crowdsourced system architecture must be extensible and secure.

continued on next page{

126They are reachable at http://insane.the-tester.de/ and http://insane.hara.tc/

124 Chapter 8 Evaluation

http://insane.the-tester.de/
http://insane.hara.tc/

{ continued from previous page

Goal Result Comment

3a Required application logic
shall be easily replaceable.

(√)
Application logic can be modified,
removed or added by simply loading
a new module; however, the module
requires a defined syntax, which is
explained, but requires understanding,
otherwise the module or even the
entire infrastructure component stops
working.

3b The source code of new
components shall be self
explanatory and easily ex-
tensible rather than highly
optimised.

(√)
Some optimisations were inevitable
as the system had to be made of
good performance in order the ac-
quire scalability. Additionally, some
code fragments considered basic
knowledge to programmers were left
uncommented.

3c Data ascertainment must be
extensible and configurable.

(√)
Data to be ascertained and the as-
certainment itself can be modified,
removed or added by defining corre-
sponding rules and fragments in the
application logic. Therefore, the same
constraints as for goal 3a apply.

3d Communication must be
encrypted.

(√)
Basically, encrypted communication
is prepared and usable, but due to
some incomprehensible problems
with the Android implementation of
HTTPs and certificate handling in PHP,
encryption is currently deactivated via
a configuration setting.

3e Data stored on servers must
be encrypted.

× Currently, only passwords are ‘en-
crypted’ by only storing their SHA-256
hash. All other data is stored in plain!

3f User shall be bound to in-
frastructure components
only loosely.

√
Users are free in their choice of either
contacting building servers directly
or via an INSANE. Further, the corre-
sponding user profiles are stored on
the INSANEs and only amended by
ACL entries on the building servers.
Further, the INSANE to contact is
non-rigid as the DHT-based distribu-
tion envisages separate hash-tables
for different regions; hence, a user
would contact different INSANEs in
different regions of the world, while
having a guarantee of their data being
accessible.

continued on next page{

8.1 Conformity of the Implementation to the Design Goals 125

{ continued from previous page

Goal Result Comment

3g GSM data shall be ascer-
tained and stored for future
processing and information
extraction.

√
GSM fingerprints can be created and
are stored in the crowdsourcing mod-
ule. However, the stored data is not
correlated to other building data, yet.
Therefore, making use of the stored
data is possible in the future.

3h As proof of system function,
at least one crowdsourcing
method must be functional.

√
Position corrections are supported.

The table assumes availability of the results of [Bom12].

8.2 COMPARISON OF OLD AND NEW COMMUNICATION

An interesting aspect of evaluation definitively is the communication overhead generated by
newly introduced modules, etc. However, overhead can only be added to existing communica-
tion, so basically only the non-crowdsourcing access of clients on building servers can be com-
pared to the anonymised crowdsourcing getter-access proxied via an INSANE. However, another
communication can be evaluated, even though this should not be possible: creation of WLAN
fingerprints, which is – as a reminder – a crowdsourcing-setter. This lucky fact originates in the
non compliant implementation of the fingerprinting server in [Gru12], where it was introduced
as a means to enhance positioning quality, but it was not explicitly considered crowdsourcing.

Before amending the MapBiquitous architecture with crowdsourcing capabilities, the retrieval of
WFS data as well as (WLAN) fingerprinting-based positions was already present. The WFS data
were requested from the building servers, the fingerprinting-based positions from the finger-
printing server. Both are still possible, but the access to the fingerprinting server is considered
deprecated and shall not be used. In the future, direct access to the fingerprinting server will
most likely be blocked on .htaccess-level.

8.2.1 Comparison of the WFS requests

First, focussing on the WFS requests a clear overhead can be recognised, which shall be exem-
plarily discussed for the WFS request http://carlos.inf.tu-dresden.de:8080/geoserver/
tud_inf/wfs?SERVICE=wfs&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=tud_inf:TUD_
INF_G&. This is a simple GET request, returning a XML-document with a total size of 2088 Byte,
of course considered without HTTP headers, TCP headers, etc. This negligence of the headers
is important, as their actual size does not matter, since the evaluation shall show the additional
overhead to be added to the original data. The same applies for the original request, in which
only the actual data are considered: For the GET request the actual data are the GET variables
(?SERVICE=wfs&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=tud_inf:TUD_INF_G&) with
a total size of 72 Byte. In sum, the total size of the communicated data (request and reply) is
2160 Byte for the non-crowdsourcing direct access of the client on the building server.

Now, aiming at the same data to be exchanged, the crowdsourcing getter-access proxied of an
INSANE shall be evaluated. This evaluation is split into two parts for reasons of comparability.

126 Chapter 8 Evaluation

http://carlos.inf.tu-dresden.de:8080/geoserver/tud_inf/wfs?SERVICE=wfs&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=tud_inf:TUD_INF_G&
http://carlos.inf.tu-dresden.de:8080/geoserver/tud_inf/wfs?SERVICE=wfs&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=tud_inf:TUD_INF_G&
http://carlos.inf.tu-dresden.de:8080/geoserver/tud_inf/wfs?SERVICE=wfs&VERSION=1.0.0&REQUEST=GetFeature&TYPENAME=tud_inf:TUD_INF_G&

The first part evaluates the communication between client and INSANE (encapsulated in the
columns of Table 8.2.1 headed ‘CS communication’), while the second part evaluates the com-
munication between INSANE and building server (encapsulated in the columns of Table 8.2.1
headed ‘BS communication’).

Assuming the user already has a valid account registered on the INSANE they are contacting127,
the results given in Table 8.2.1 and Table 8.2.2 emerge for different requests, all following the
same size measuring conventions as described earlier. The sizes given in parenthesis are the
sizes including hash-based signatures128. Further, the column headed ‘Overhead’ represents the
overhead over the entire communication-path, not limiting this aspect to the packet level.

Table 8.2.1: Results for ‘getFeature’ on ‘tud_inf:TUD_INF’

Non-CS communication CS communication BS communication

TYPENAME Request Reply Request Reply Request Reply Overhead

tud_inf:TUD_INF_G 72 Byte 2088 Byte 206 Byte 2118 Byte 159 Byte 2118 Byte 2441 Byte

(782 Byte) (2668 Byte) (739 Byte) (2668 Byte) (4697 Byte)

tud_inf:TUD_INF_E0 73 Byte 84060 Byte 207 Byte 84090 Byte 160 Byte 84090 Byte 84414 Byte

(787 Byte) (84670 Byte) (740 Byte) (84670 Byte) (86734 Byte)

tud_inf:TUD_INF_E1 73 Byte 118849 Byte 207 Byte 118879 Byte 160 Byte 118879 Byte 119203 Byte

(787 Byte) (119429 Byte) (740 Byte) (119429 Byte) (121463 Byte)

tud_inf:TUD_INF_E2 73 Byte 123816 Byte 207 Byte 123846 Byte 160 Byte 123846 Byte 124170 Byte

(787 Byte) (124426 Byte) (740 Byte) (124426 Byte) (126490 Byte)

tud_inf:TUD_INF_E3 73 Byte 127849 Byte 207 Byte 127879 Byte 160 Byte 127879 Byte 128203 Byte

(787 Byte) (128459 Byte) (740 Byte) (128459 Byte) (130523 Byte)

Results are based on actual communication using the INSANE at insane.the-tester.de.

Table 8.2.2: Results for ‘getFeature’ on ‘tud_inf:TUD_INF’ in %

TYPENAME Overhead Client↔INSANE Total Overhead

tud_inf:TUD_INF_G 7.59 113.01
(59.72) (117.45)

tud_inf:TUD_INF_E0 0.19 100.33
(1.57) (103.09)

tud_inf:TUD_INF_E1 0.14 100.24
(1.09) (102.14)

tud_inf:TUD_INF_E2 0.13 100.23
(1.07) (102.10)

tud_inf:TUD_INF_E3 0.13 100.22
(1.04) (102.03)

Results are based on actual communication using the INSANE at insane.the-tester.de.

127Should there be no such account, an unforeseeable overhead is created by – in the worst case – having the user
contact several INSANEs until they have reached the responsible INSANE in their geographical region and have com-
pleted registration.

128The signature is calculated for the hash of the data rather than the data itself in order to save on computing effort.

8.2 Comparison of old and new Communication 127

insane.the-tester.de
insane.the-tester.de

The results seem unexpected, but they are actually very logical. All communication needs to
be signed and amended with additional data such as the client-ID, the user’s password, a time-
stamp, etc. Therefore, by definition of the interfaces used, the measurable overhead is cre-
ated129. However, the numerical overhead is constant, as the same data are amended, and
the chosen signing algorithm always generates signatures of the same length. In summary for
the example of getFeature-requests on the building server ‘tud_inf:TUD_INF’, communication
proxied via an INSANE always adds 130 Byte for the request from client to INSANE, another
160 Byte for the communication from INSANE to the building server, as well as 30 Byte for the
reply from the INSANE to the client and the original data size plus 30 Byte for the reply from
building server to the INSANE. With the hash-based encryption, all four communications are
amended with 580 Byte signature data each, ergo 2320 Byte total signature data.

As data amendments are constant and only the size of the original data varies, the variable over-
head lies in the result-packet transmitted from the building server to the INSANE. However, the
variable quantitative overhead only varies in actual data size, the qualitative overhead percentage
generated by the data is at a constant 100%, and the variable qualitative overhead is strongly
correlated with the constant size on the amendments. Therefore, the quantitative overhead is
strongly correlated linearly and the qualitative overhead is reverse polynomial correlated to the
size of the original data, as displayed in Figure 8.2.3. The results lead to the following conclu-
sions:

lim
data size→∞

OverheadClient↔INSANE = 0% (8.2.1)

lim
data size→∞

Overheadtotal = 100% (8.2.2)

Figure 8.2.3: The quantitative and qualitative WFS overheads

129For details on the amended data defined by the interfaces, refer to Appendix H.

128 Chapter 8 Evaluation

Even though expected, considering the fact that the INSANEs proxy all communication, the re-
sult in Equation 8.2.2 is outstanding, as the overhead only results in a duplication of the trans-
mitted data without any further overhead. – Considering the possibility of compression130, there
is clear potential for reduction of the quantitative overhead.

The result in Equation 8.2.1 does not surprise, as the total overhead is a constant 160 Byte
(1320 Byte with encryption), the overhead can be neglected for the data to be expected for
WFS requests. – Once again, considering the possibility of compression130, there is clear po-
tential for overhead reduction.

However, both results need to be considered with care, as both base on measurements of un-
encrypted HTTP traffic. Encrypted HTTPs communication adds an additional overhead, but as
this has been discussed in a variety of academic as well as general sources131, it shall not be
discussed here.

Summarising, the results are as to be expected for standard web servers and proxy servers
handling resources. In this spirit, the crowdsourced MapBiquitous architecture132 neither wors-
ens nor enhances the amount of data to be transmitted between client and server133.

8.2.2 Comparison of WLAN-Fingerprinting Communication

Other than the WFS requests, there is no conceptual difference between the two types of fin-
gerprinting. As described in section 7.2, the newly created crowdsourced WLAN fingerprinting
actually uses the same fingerprinting service and interacts with the same interfaces, as the old
MapBiquitous did before crowdsourcing was introduced. Therefore, this comparison might even
generate better conceivable results than the previous subsection.

There are two cases to be considered, first uploading a fingerprint (‘fingerprinting’) and second
retrieving a position based on a fingerprint (‘positioning’).

Fingerprinting: Uploading a WLAN-Fingerprint

For the first case, the default configuration used by MapBiquitous requires ten samples to be
uploaded for a fingerprint. The upload itself has three phases134:

1. • Send a HTTP GET request with a random integer to ‘start?id=RNDINT’.
The only requirement towards the random integer is for it to be in-between 0 and
232 − 1 = 4294967295. As this random integer is transmitted as a GET variable, it has
a minimum transmission size of 1 Byte (< 10) and a maximum transmission size of
10 Byte (> 999999999).
As the possibility of either of the integers within the interval is equal, the average
transmission size of the request in phase one is 9 Byte (‘start?id=’) plus 9.7413 Byte135

(the random integer); hence a total of 18.74 Byte for the GET variables.

130Most web servers support GZIP compression.
131In fact, so many that this can be considered general knowledge to computer scientists.
132With neither SSL encryption nor GZIP compression.
133As the INSANE acts as proxy for building server access, it can be considered a server.
134Exemplary for the fingerprinting server at http://carlos.inf.tu-dresden.de:8080/fingerprints/clustered/
135Average size: (10·1+90·2+900·3+9000·4+90000·5+900000·6+9000000·7+90000000·8+900000000·9+3294967295·10) Byte

4294967295 = 9.7413 Byte

8.2 Comparison of old and new Communication 129

http://carlos.inf.tu-dresden.de:8080/fingerprints/clustered/

• Add the position at which the fingerprint was generated and number of samples as
POST variables to the GET request136.
The POST variables look something like
position={"building":"tud_inf:TUD_INF","latitude":51.02567595421748,
"wt_sec":0.0,"longitude":13.723133764723404,"heading":0.0,"altitude":0.0,
"timestamp":1349963850,"accuracy":0.0,"level":3}&nr_of_samples=7
As the size of the longitude and latitude vary137, this evaluation shall focus on the
faculty building of the Faculty of Computer Science at TUD. Both latitude as well as
longitude may vary in the 14th and 15th decimal place. Further, the amount of sam-
ples may vary depending on how many WLAN access points are visible to the client-
device at the location the fingerprint is created. As more than nine access points can
very seldom be seen at the same time, it shall be assumed that the size of the sam-
ple count is constant at 1 Byte, especially yielding an average visibility of 6 access
points. Hence, the average size of the POST data is 205 Byte.

• Total average size of GET and POST data in phase one: 223.74 Byte

2. • Send a HTTP GET request using the same integer as in the first phase to ‘sample
?id=RNDINT’ for each sample of the fingerprint.
As in phase one, the random integer adds 9.7413 Byte to the size of the GET data
plus 10 Byte for the variable and path; hence a total of 19.74 Byte for the GET vari-
ables.

• Add the sample data as POST variables to the GET request136.
The POST variables look something like
sample={"ap_mac":"08:17:35:33:59:00","y":0.0,"x":0.0,"latitude":0.0,
"longitude":0.0,"ap_signal":-68,"id":0,"floor":0}
As the signal-strength of the access points is measured in integer decibel values, the
ap_signal’s size can be assumed to be constantly 3 Byte; therefore, the POST data
generate a transmission size of 117 Byte for each sample.

• Total average size of GET and POST data in phase two: 136.74 Byte

3. • Send a HTTP GET request using the same integer as in the first and second phase to
‘finish?id=RNDINT’.
Added to the 11 Byte for the variable and path, the random integer adds 9.7413 Byte
to the size of the GET data plus, same as it did in phases one and two; hence a total
of 20.74 Byte for the GET variables.

• As there are no POST data, the third phase does not have any data size for the POST
data.

• Total average size of GET and POST data in phase three: 20.74 Byte

Of course, each packet transmitted to the fingerprinting server results in a ‘HTTP/1.1 200 OK’-
reply, but the reply has no body; therefore, the reply shall be neglected. The average total size
of the data transmitted can be assumed to be (223.74 + n · 136.74 + 20.74) Byte, with n being
the amount of samples to be transmitted.

In the correct implementation treating WLAN fingerprinting as a variant of crowdsourcing, clients
must transmit their submissions to an INSANE from where they are forwarded to the corre-
sponding building server. Even though implementation reality still uses the dedicated finger-
printing server, it shall be assumed each building server has its own fingerprinting service.

The major difference between the old and deprecated fingerprinting interface and the new crowd-
sourced interface is the reduction from eight (in average) requests to one. Basically, the schema
follows the concept investigated earlier for the WFS request. The proxy operation culminates
in a request from client to the INSANE of a length of (353 + n · 117 + n) Byte138 129, in which the
(n · 117 + n + 1) Byte added to the 352 Byte base originate in the previously mentioned 117 Byte

136This faulty implementation violating the HTTP standard was given by the existing fingerprinting server.
137Up to 15 decimal places are supported, so the size of the latitude can range between 3 Byte (0.0) and

19 Byte (−89.999999999999999), and the size of the longitude can range between 3 Byte (0.0) and 20 Byte
(−179.999999999999999).

138The size yields an assumption of a password of length 8 and the building server ‘tud_inf:TUD_INF’ being contacted.

130 Chapter 8 Evaluation

per sample, n − 1 commas separating the samples from each other as well as 2 Byte for the
array-parenthesis [and] of the encapsulation JSON-String. Using hash-based signatures128, an
additional 580 Byte must be accounted. As true for the deprecated interface, the size of the re-
ply shall be neglectable.

Following the transmission from client to the INSANE, the fingerprint data must be forwarded
to the corresponding building server. This culminates in additional (464 + n · 117 + n) Byte139 129

of data to be transmitted from the INSANE to the building server, now having the previously ex-
plained (n · 117 + n + 1) Byte added to the 463 Byte base. Once again, using hash-based signa-
ture128 adds another 580 Byte.

The previously calculated results are summarized in Table F.1.1 in the supplementary; once again,
the number in parenthesis represent the results with encryption. Further, the results of Table F.1.1
are summarised into Figure 8.2.4 as well as:

lim
samples→∞

OverheadClient↔INSANE = −15.56% (8.2.3)

lim
samples→∞

Overheadtotal = 68.89% (8.2.4)

Figure 8.2.4: The percentual overheads for WLAN fingerprinting

The results seem rather surprising. No compression130 is considered, but the overhead is neg-
ative for the client↔INSANE communication and abundantly clear below 100% for the entire
proxy communication. However, these results are only valid for many samples to be uploaded,
i.e. 100 or more. Considering the default setting described earlier, only an average of 6 WLAN
access points are visible at a position to be fingerprinted in the faculty building; hence, numbers
to be considered ‘practical’ range between −3.57% and 2.68% for the client↔INSANE commu-
nication (43.87% and 74.87% respectively for signed128 communication), and in a range from
101.85% to 119.06% (196.37% to 263.44%) for the total proxy communication.

139The size yields an assumption of the INSANE handling the request being ‘insane.the-tester.de’ and the size of the
model-description being 20 Byte.

8.2 Comparison of old and new Communication 131

Looking at the revised (i.e. realistic) results, the same conclusion can be drawn as for the WFS
requests: The crowdsourced MapBiquitous architecture neither worsens nor enhances the amount
of data to be transmitted between client and server. However, as soon as the packets are signed128,
the average overhead to be expected is rather unacceptable, clearly showing a demand to utilise
compression130 for packet transmission.

Positioning: Determining the Position based on a WLAN-Fingerprint

For the second case, the default configuration used by MapBiquitous actually only requires the
client to transmit a few access point data (generated by the same method that is used for the
fingerprinting) to the fingerprinting server. Therefore, the size of the transmitted data is strongly
correlated to the amount of access points visible at the location of the client, as well as the
amount the client is willing to transmit. To ease the evaluation, it shall be assumed that all vis-
ible access points are considered for positioning and hence their information needs to be trans-
mitted to the server. Differing from fingerprinting, each access point sample has an average size
of 50 Byte. Added to this data size are n + 2 Byte for the commas separation the n samples as
well as for the array-parenthesis [and] of the encapsulation JSON-String. Further, the size of
the actual request-path, which is 8 Byte for ‘position’, is added. as well as the size of the data
of the previous position, which is used as a calculation base by the fingerprinting server; it is av-
eraged at 200 Byte. As these data are transmitted as POST data, the corresponding POST vari-
able identifiers (accesspoint= and &prev_position=) must be accounted for by adding another
28 Byte to the data size. – Summarising, the deprecated positioning interface requires the client
to transmit (238 + n · 50 + n) Byte.

The newly created crowdsourced interface129 which is only accessible via an INSANE only adds
a constant to the data size, which in the course of this evaluation is 164 Byte140 (744 Byte with
signature128), resulting in a total data size of 402 + n · 50 + n Byte (982 + n · 50 + n Byte) for the
client↔INSANE communication.

The forward to the corresponding building server yields the transmission of 424+n·50+n Byte141

from the INSANE to the building server. As before, signing128 the packet results in additional
580 Byte to be transmitted.

Differing from the fingerprinting, positioning yields a server-side reply, namely the position calcu-
lated by the server. This reply has an average size of 200 Byte (780 Byte with signature). It has
to be relayed via the INSANE back to the client.

The calculations for different sample amounts are summarised into Table F.2.1. Further, the re-
sult of Table F.2.1 are visualised in Figure 8.2.5 and show a clear trend:

lim
samples→∞

OverheadClient↔INSANE = 0% (8.2.5)

lim
samples→∞

Overheadtotal = 100% (8.2.6)

The results given in Equation 8.2.5 and Equation 8.2.6 seems outstandingly good, as they sug-
gest that only the expected duplication of the transmitted data due to the proxy communica-
tion occurs. However, as true for the fingerprinting results, these results delude, as they are
only valid for large amounts of samples. Once again, assuming the average of 6 WLAN access
points visible in the faculty building, more realistic numbers emerge from 23.53% to 41.94% for
the client↔INSANE communication (106.74% to 190.28% for signed128 communication) as well
as from 150.22% to 189.51% (316.64% to 486.19%) for the entire communication path.

140Assuming a pathword-length of 8 Byte and the building server contacted being ‘tud_inf:TUD_INF’.
141The size yields an assumption of the INSANE handling the request being ‘insane.the-tester.de’.

132 Chapter 8 Evaluation

Figure 8.2.5: The percentual overheads for WLAN positioning

Especially the revised results for signed communication are totally inacceptable with an ex-

pected average overhead of over 377.57% for the entire communication path, being almost the

quadruple of what is to be expected for a communication via one intermediate proxy. – Utili-

sation of compression130 must definitely be considered for the communication between the

INSANEs and the building servers in order to reduce the quantitative overhead.

The expectable overhead of below 25% when considering only the client↔INSANE communica-

tion can be deemed ‘still acceptable’; however, as soon as packets are signed128, the overhead

rises up to nearly 100%, which is unacceptable. – Once again, utilisation of compression must

definitely be considered.

8.2.3 Conclusion for Fingerprinting and Positioning

The evaluation results seem unacceptable. However, one should not forget that the original

communication before crowdsourcing was introduced did not pay any respect to security. Any-

body could access the interface and create fingerprints. Now, after crowdsourcing has been in-

troduced and the fingerprinting server should only be reachable via an INSANE, passwords and

valid user accounts are required. Taking into consideration that the original packet sizes were

quantitatively small, the overhead created by the passwords, client-IDs, etc. surely boosts the

qualitative overhead into enormous levels. With respect to the now available security due to au-

thentication, this qualitatively high overhead is a fair price to pay.

8.2 Comparison of old and new Communication 133

8.3 RESOURCE USE AND COMMUNICATION LOAD COMPARED TO
‘DEFAULT WEBSITES’

As it is hardly possible to measure scalability with hard numbers since physical measurands are
strongly correlated to the hardware used, the connection speed, et cetera, a comparative ap-
proach of evaluation seems to be the method of choice. Therefore, it shall be assumed that the
INSANE as well as the BSCSM can be considered websites offered by web servers; then a di-
rect comparison to websites operating on the same or very similar hardware can be conducted
and in terms of propagation the scalability can be estimated.

In order to have a ground for the comparison, the basic hardware facts of the evaluated setup
are given in Table F.3.1 as well as Table F.3.2 (both in the supplementary). Originally, four set-
tings were used for the series of measurements; however, all four series uncovered some in-
comprehensible server and/or network problems in the faculty building of the Faculty of Com-
puter Science at TUD, as they all shared the server ‘CARLOS’ as provider for building server
functionality. Therefore, a fifth setting was used, relying only on ‘external’ resources by using
three VPS-based setups, one for the INSANE, one for the BSCSM and one simulating a majority
– i.e. 85.4% – of the clients. However, the first four settings are not lost and their results actu-
ally may help to improve the quality of the network in the affected parts of the faculty building;
therefore, they are provided in Appendix I.

For the actually considered setting, the following determining factors applied:

1. The machines simulating the clients were placed in an apartment142 as well as a server
farm north-west of Dresden, Saxony.

2. An actual INSANE at http://insane.the-tester.de was used.
3. The VPS hosting the INSANE at http://insane.the-tester.de as reconfigured to pro-

vide as a dummy-BSCSM. I.e., the VPS was set up to run the actual building server crowd-
sourcing module application logic, but any actual building server processing143 was simu-
lated by delaying the reply randomly from 20ms to 70ms.

As for the four unaccounted settings, the basic idea for this setting was to start into the evalua-
tion of resource use and communication load by proving that the results are strongly correlated
to the hardware and general load of the servers. This would prove comparability of the scala-
bility results to general web servers, and as such would allow to simply apply findings of web
server tests to the MapBiquitous server components.

For the test setting, the interfaces descriptions as given in Appendix H applied144. System loads
of the INSANE as well as the BSCSM were directly recorded from ‘uptime’, and the network
statistics were retrieved via ‘Wireshark’.145

Measuring series for the setting were conducted for different amounts of parallel client requests
and were repeated ten times. The results were then averaged into one representative table.

The results for the setting can be found in Table F.4.1. Additionally, they are visualised in Figure 8.3.1.

The results clearly show a strictly linear correlation between the amount of parallel client re-
quests and the packet losses as well as the successful replies. This is not surprising as the
communication follows a linear path, from the client to the INSANE, to the BSCSM, back to the

142Connected to the internet via a DSL-6000 connection.
143Like calling the WFS, generating a fingerprint, etc.
144As a reminder: The deployed BSCSM did not do any actual building server related processing.
145Wireshark 1.8.3 was used in recording mode. The log-files were evaluated after the measurements, as live-evaluation

would have falsified the results by adding further load to the machines.

134 Chapter 8 Evaluation

http://insane.the-tester.de
http://insane.the-tester.de

Figure 8.3.1: Packet transmission statistics for the performance and scalability test

INSANE and finally back to the client. Merely the saturation at about 5000 parallel competing re-
quests breaks the linear correlation; however, this is expected, as the underlying Apache httpd
web servers of the INSANE as well as the BSCSM do normally fail to process all requests at
that high degree of parallelism. Therefore, the deployed INSANE and BSCSM behave as would
be expected from any ‘normal’ website hosted on the same VPS.

Summarising, the INSANE and the BSCSM as implemented both follow the operating figures of
any general web server. They neither improve nor worsen the performance and scalability of the
underlying Apache httpd web server. Therefore, the numerous recommendations that are given
for web servers all over the web146 can be applied without further refinement to the INSANE as
well as BSCSM.

8.3.1 Exemplary Recommendations for Deployment

As previously mentioned, there are in fact so many recommendations on how to optimise per-
formance of a web server, that this information can be considered general knowledge – at least
for computer scientists. Therefore, rather than conceiving an own recommendation for an actual
deployment, the author of this thesis will pick an exemplary recommendation available in the
internet. As it exhaustively explains a lot of what it actually recommends with background infor-
mation and corresponding calculations, et cetera, the author of this thesis wishes to refer to the
book ‘Practical mod_perl’ by Stas Bekman and Eric Cholet147.

In chapter 11 of ‘Practical mod_perl’ the memory consumption depending on different directives
of the Apache httpd web server is analysed. This of course having mod_perl activated. As the

146E.g. just google ‘Performance Tweak Apache’.
147It is published under the ISBN 0-596-00227-0 and can be ordered with the order number ‘2270’ on http:
//modperlbook.org/. As it is licensed under a Creative Commons Attribution Share Alike license (CC-BY-SA), ref-
erencing it within this thesis is legal und justifiable.

8.3 Resource Use and Communication Load compared to ‘Default Websites’ 135

http://modperlbook.org/
http://modperlbook.org/

previously used evaluation setting had mod_perl activated on all three VPS, the recommenda-
tions from ‘Practical mod_perl’ can be applied without further refinement.

Of course, the setting used in the evaluation is far from actual server usage to be expected from
the MapBiquitous project in the near future. This is owing to the fact that the server configu-
rations used in the setting are optimised to run a social community with burst access loads at
certain hours of the day148. For MapBiquitous, it is fair to assume that the near future will not
see more than 20 users accessing an INSANE at the same time. However, the setup is scalable
and supports more competing accesses by simply adjusting the directives correspondingly.

For the identified demand to support 20 parallel user accesses, the following recommendations
shall be given based on the system specification of the machine ‘CARLOS’ (refer to Table F.3.1
in the supplementary) and the information provided in ‘Practical mod_perl’:

• Reserve 256 MB RAM for Apache httpd.

Of the 2 GB of available RAM on ‘CARLOS’, 256 MB shall be dedicated to Apache httpd
and mod_perl together.

• Do not modify HARD_SERVER_LIMIT.
HARD_SERVER_LIMIT does not need to be edited as a MaxClients-value of 250 is sufficient.
This also allows use of Apache httpd ‘out of the box’, as it does not need to be recompiled.

• Set MaxClients to 25 iff memory-sharing is disabled.

Without memory-sharing enabled, the expectable size of each httpd child process is 10 MB;
therefore, the available RAM (reminder: 256 MB) leads to a MaxClient-value of 25, which
is sufficient to server the expected 20 parallel user accesses while maintaining a reserve
of 20%.

• Set MaxClients to 62 iff memory-sharing is enabled.

With memory-sharing enabled and assuming having 6 MB of shared memory per child
process, the MaxClient-value can be set to 62, yielding a reserve of 210% over the ex-
pected 20 parallel user accesses.

• Do not deactivate KeepAlive.
For the expected access behaviour of clients towards INSANEs and INSANEs towards
BSCSMs, it is recommendable to keep the KeepAlive-directive enabled, ensuring that
TCP connection keep alive is used with the HTTP 1.1 connection. It significantly reduces
the connection establishment and termination overhead, which automatically reduces
the server-load. Additionally, the desired SSL-encryption of the communication (reminder:
HTTPs shall be used rather than HTTP) benefits from keep-alive connections as the key-
exchange, etc. generate several packets of overhead and it would be very ill-advised to
establish, use and terminate a separate TCP connection for each packet.

• Leave MaxKeepAliveRequest at the default of 100.

The default MaxKeepAliveRequests values of 100 is sufficient, as this allows an average of
5 keep-alive requests per expected user access.

It should be obvious that the speed of the CPU only has an impact on the response time. Hav-
ing all user access originate on mobile devices such as smartphones, there is no demand for
shortest possible response times; hence ‘CARLOS’ is currently overpowered with its 2.4 GHz
CPU.

These recommendations allow easy adaptation to increasing parallel user access behaviour.
Having memory-sharing enabled, these recommendations allow up to 49 parallel user accesses
without any modifications while maintaining the recommended reserve of 20%. However, should
more than 49 parallel user accesses be expected, it is sufficient to simply increase the size of
the RAM dedicated to Apache httpd and mod_perl. Maintaining the 6 MB of shared memory per
child, the following scalability formula emerges:

148http://www.hey-ai.com/ has had over 11000 users with about 250 accessing at the same time in peak periods,
generating round about 4750 competing requests.

136 Chapter 8 Evaluation

http://www.hey-ai.com/

Dedicated RAM required = ((child memory) − (shared memory per child)) · (MaxClients)

+ (shared memory per child)

= (10 MB − 6 MB) · (MaxClients) + 6 MB

= (4 · MaxClients + 6) MB (8.3.1)

Applying Equation 8.3.1 to different amounts of parallel user accesses, the results of Table 8.3.2
emerge, which are also visualised in Figure 8.3.3. It is obvious that the correlation is strictly lin-
ear, which is exactly the expected result.

Table 8.3.2: RAM recommendations with respect to scalability

Parallel

User

Accesses

With 20%
Reserve

Dedicated

RAM

required

49 59 242 MB

50 60 246 MB

60 72 294 MB

70 84 342 MB

80 96 390 MB

90 108 438 MB

100 120 486 MB

200 240 966 MB

300 360 1.4 GB

400 480 1.9 GB

500 600 2.4 GB
Results are based on Equation 8.3.1.

8.4 CONCLUSION

As the results of the evaluation clearly show, the performance of the newly introduced compo-
nents depends on the hardware they are deployed on and the speed of their communication
lines. This conclusion can be proven by the striking similarity of the newly implemented INSANE
and BSCSM deployed in VPS-environments to the performance of prevalent web servers. Addi-
tionally, as the INSANE and the BSCSM share the same core application logic and the strategy
of their design is the same, namely imperative structured programming with modularised in-
cludes, the assumption that the same conclusion applies seems fair and justified.

With respect to scalability, the evaluation clearly shows that the same basic constraints apply
as for any regular web server. Therefore, any given scalability result for different hardware can
be applied to the INSANE and BSCSM, as well. The newly implemented components neither
enhance nor worsen the performance of the underlying web server149.
149As a reminder, the underlying web-serer is Apache httpd with PHP.

8.4 Conclusion 137

Figure 8.3.3: RAM recommendations with respect to scalability

138 Chapter 8 Evaluation

9 CONCLUSION AND
FUTURE WORK

‘It’s more fun to arrive a conclusion than to justify it.’

Malcolm Forbes

140 Chapter 9 Conclusion and Future Work

CONCLUSION AND FUTURE WORK

9.1 CONCLUSION

As the concept introduced in chapter 6 has collided with a vast variety of problems as shown
in chapter 7, before actually considering the ‘real’ results and conclusions of this thesis, a first
clear conclusion can be drawn: The task of conceiving, implementing and proving an automated
means for implicit crowdsourcing could not be pervaded. Rather, the need for a reliable archi-
tecture to actually distribute and process crowdsourcing – independent of it being implicit or
explicit – was identified. As such an architecture did not exist, the focus of the practical portion
of this thesis shifted from actually implementing implicit crowdsourcing to preparing MapBiq-
uitous for crowdsourcing in general. Finally, the team effort with Gerd Bombach totally post-
poned automated processing of implicitly crowdsourced data. Instead, the above mentioned
reliable architecture was conceived and implemented for crowdsourcing in general, having the
explicit position corrections introduced in [Bom12] run as an application proving feasibility for
explicit crowdsourcing on the newly created architecture. Therefore, the implicit crowdsourc-
ing aspect was reduced to only collecting (GSM) data implicitly, without actually processing the
data and extracting information on the building servers. Would the processing time of this the-
sis not have been reduced by over one month, there might possibly have been an opportunity
to actually conceive, implement and evaluate algorithms for information retrieval from implicitly
crowdsourced data, but this can not be verified from the results available at this time.

On the brighter side, the architecture conceived proved to be same as efficient and scalable in
comparison to any default web server, as the same constraints apply. Even further, it could be
proven that the newly implemented components show the exact behaviour one would expect
from any website running on an Apache httpd web server, neither enhancing nor worsening the
performance and scalability of httpd.

Finally, the conceived concept can be applied not only for the MapBiquitous architecture. The
conceived and implemented components allow a broad variety of applications, as the modu-
larised structure actually allows any application logic to be deployed within the components. For
example, the architecture conceived in this thesis allows replacement of the building servers
with coffee machines, having the application logic implement controls for coffee brewing, of
course using the Hyper Text Coffee Pot Control Protocol as described in RFC 2324150.

9.2 FUTURE WORK

As this thesis and therefore inevitably also [Bom12] had to focus on the amendment of the ex-
isting MapBiquitous architecture in order to support crowdsourcing in a reliant way, only one
actual use case – i.e. the correction of WLAN fingerprinting positions – could be considered.
However, this use case could only be implemented on a per-user base; hence, the consolidation
of submissions of different users remains unsolved. Therefore, the actual processing algorithm
consolidating the separate results into one general result should be investigated in the future.
Also, further applications implementing more use cases should be implemented in order to ac-
tually prove the new architecture’s universal suitability for crowdsourcing.

With respect to the expansion of the MapBiquitous project to support community related as-
pects, the prepared database structures and interfaces could be focussed and the actual com-
munity provider could be considered. This is important as crowdsourcing relies on the crowd

150Of course, RFC 2324 is an IETF April Fool’s joke. However, it can be utilised to show the possibilities of the concept
conceived within this thesis.

9.1 Conclusion 141

being presented with a reward at least once in a while. Therefore, a clever reward system could
be implemented in the context of the communities to be conceived. For example, special avatars
could be made available only to prevalent crowdsourcers.

On an important note, the prepared signatures must be actually implemented. As for now, the
MapBiquitous architecture envisages the use of signatures; however, only pseudo-signatures
are implemented. These pseudo-signatures are generated and evaluated in method stubs, so
the basic task in the future would be to actually implement an interface to the PKI and replace
the stubs with actual application logic. Even further, currently the implementation does not pay
any respect to security aspects such as genuineness of the INSANEs, etc. Therefore, excessive
use of the PKI in order to use a key-based authentification could be considered.

For the moment, there are different INSANEs available, however they are not actually organ-
ised in a real DHT. All of the DHT functionality is simulated by method stubs and also partially
missing. Hence, another thesis could focus on the implementation of the DHT-aspects of the
INSANE distribution.

On a more technical note, support of IPv6151 should be considered. Especially the current imple-
mentation uses the country-API of host-IP which only supports IPv4-based region lookup.

Finally, the current implementation only allows manual sifting of submissions using a direct
database-access. The original concept of Gerd Bombach and the author of this thesis envisaged
a trust-based automated sifting as well as manual sifting. Hence, a trust concept152 as well as a
sifting interface for the building managers should be investigated and implemented.

151Internet Protocol in version 6
152E.g. ‘At least 20 submissions were made correcting this position and 17 of the submitters agree within a 5 metre

radius; therefore, this 17-out-of-20 result can be automatically sifted’.

142 Chapter 9 Conclusion and Future Work

PART III APPENDIX

‘If this is victory, then our hands are too small to hold it.’

from ‘Lord of the Rings: The Return of the King’ by John Ronald Reuel Tolkien, CBE

Contents of this Part
A Milestones 145

B Glossary 147

C References 149
C.1 Auxiliary Means . 153

A MILESTONES

For the conceptual design and implementation of the proof-of-concept modifications to Map-
Biquitous in line of the creation of this thesis as well as Gerd Bombach’s assignment paper, the
following milestones were scheduled:

• Milestone I – 13 August 2012
– make database(s) consistent
∗ merge POI data, fingerprint data and remaining building data into one building

database per building
∗ appoint a structure to new miscellaneous data such as semantics of room usage
∗ create reasonable database structure for crowdsourcing data

– make use of hashed IMEI for pseudo user-management
∗ modify existing interfaces
∗ determine and create new interfaces
∗ create reasonable database-structure for user-management
∗ for comparability: store all physical data on clients (anything involved in position-

ing, device type, WLAN and GSM module, CPU (‘can the device participate in
distributed computations should there be a later implementation of crowd com-
puting?’))

∗ store user consent on server (preparation for required signatures!), so that users
can erase their submissions

– GUI-Stub for client functionality
– Tenshi: interim defence of the thesis

• Milestone II – 28 September 2012
– manual correction of position
∗ define and create new interface (get WGS-84 coordinate and create an new fin-

gerprint there)
∗ determine whether a new POI is created, or if an existing POI is being modified

(must be done on server-side!)
∗ define when a correction should be considered valid – idea: trust-value (‘7 out of

10 say...’)
∗ determine when two correction-POIs are identical – precision of the detection or

line of visibility of humans (ca. 3 metres)?
∗ enrich existing fingerprints with GSM-information (Cell-ID, LAC strength, ...)
∗ modify or create interfaces for new GSM-layer

– required calculations on server-side
• Milestone III – 19 October 2012

– verification and testing
– evaluation and results

145

– submission of written work
• Should there be excess time

– further proof-of-concept implementation
– map correction information – semantic information modifiable
– divide MapBiquitous-client into a service for unaware crowdsourcing and a full-size

GUI for the rest
∗ outsource positioning and server-communication into service
∗ rest (UI, calculations, etc.) into GUI
∗ This is imperative! Sooner or later there is no way around this, so it should be at

least discussed in ‘future work’-section of the written work within Milestone III

Milestone I could not be met due to missing documentation and erroneous server interfaces
in the geoserver, which was supposed to implement easy PostGIS-access. Further, incompat-
ibility of Maven with the Android Development Kit prevented integration of the fingerprinting
server into the per-building architecture in due time. Lastly, the interim defence was pushed to
3 September 2012.

Milestone II could not be met, as well. It had to be pushed to 8 October 2012 for the servers’
side and 15 October 2012 for the clients’ side, respectively. The aspects of validity and equal-
ity of submissions were removed from the milestone as these aspects could not be brought to
a solution within the processing time. Rather, they seem to be good material for another stu-
dent’s assignment paper.

Milestone III was met with the exception of the submission of the written work. Printing of the
written work was postponed to 22 October 2012 and the submission to 25 October 2012.

146 Appendix A Milestones

B GLOSSARY

API

Application Programming Interface; specification to be used as an interface for software
components’ communication; may include: routines (ready to use or their specification),
data structures (ready to use or interfaces), object classes (ready to use or stubs) and vari-
ables (instantiated or instantiatable).

Dijkstra’s algorithm

Algorithm to find the shortest route between two points (refer to Theorem D.0.1).

Framework

a collection of libraries and/or classes for a software (sub)system, intended for durable
reusability.

HTTP

Hypertext Transfer Protocol; application protocol for distributed, collaborative, hyperme-
dia information systems; foundation of browser-based communication in the World Wide
Web; consists of multi-linear sets of objects, networking them by using logical (hyper)links
between nodes.

MAC address

Media Access Control address; ideally unique identifier of network interfaces on physical
network segment; normally assigned by hardware manufacturer, but modifiable; hence,
not actually unique.

NFC

Near Field Communication; set of standards to establish close range (touch or touch-like
proximity) wireless communication with each other.

NTP

Network Time Protocol; networking protocol used for synchronizing of clocks on distributed
computer systems in data networks with variable latency.

OGC

Open Geospatial Consortium; international voluntary consensus standards organization
encouraging development and implementation of open standards for geospatial content
and services, geographic information data processing and data sharing.

147

POI

Point of Interest; specific point location considered useful or interesting; ‘waypoint’ may
be used synonymously.

Recursion

process of self-similar repetition; ‘In its most general numerical form the process of recur-
sion consists in defining the value of a function by using other values of the same func-
tion’ (Stanford Encyclopedia of Philosophy); if you still don’t get it, see ‘Recursion’ in the
glossary.

SHA

Secure Hash Algorithm; group of standardised cryptographic hash functions; calculate a
(hopefully) unique hash value for any digital data.

SIM

Subscriber Identity/Identification Module; integrated circuit securely storing International
Mobile Subscriber Identity (IMSI) with related key used to identify and authenticate mobile
devices as subscribers in mobile networks.

Unification

let p and q be words or sentences over the same set, let subst (U, p) be the result of ap-
plying substitution U on p and let subst (U, q) be the result of applying substitution U on q ;
does an U exist that holds subst (U, p) = subst (U, q), then unify (p, q) B U is solvable (using
an unification algorithm) and p and q are unifiable, meaning they express the same struc-
ture over their set.

URL

Uniform Resource Locator; derivate of uniform resource identifier; specific character string
that references to an Internet resource.

VPS

Virtual Private Server; a virtual machine, sharing the same physical server with other virtual
machines; functionally is mostly equivalent to a separate physical computer.

W3C

World Wide Web Consortium; main international standards organization for the world
wide web.

WGS-84

World Geodetic System (1984); standard for cartography, geodesy, and navigation; com-
prises a standard coordinate frame for the Earth, a reference ellipsoid, and a geoid defin-
ing the nominal sea level; used by the GPS; last revised in 2004.

XML

Extensible Markup Language; markup language defining a set of rules for document en-
coding; human-readable as well as machine-readable; defined in W3C’s XML 1.0 Specifica-
tion; gratis open standard.

148 Glossary

C REFERENCES

[All12] ALLARD, L.: Smart Power, Handy, Notruf – crowdmap 2 – | ffm-online. 2012. – http:
//ffm-online.org/2012/05/30/smart-power-handy-notruf-crowdmap-2/
(cited on page 52)

[ASS+10] ALI, R. ; SOLIS, C. ; SALEHIE, M. ; OMORONYIA, I. ; NUSEIBEH, B. ; MAALEJ, W.: So-
cial Sensing: When Users Become Monitors. In: ACM D.2.2 [Softwareengineering]:
Design Tools and Techniques ESEC/FSE’11 (2010), 09. – ACM Code: 978-1-4503-0443-
6/11/09
(cited on page 48)

[Bec12] BECKER, L.: Hackergruppe veröffentlicht eine Million iOS-Geräte-IDs. In:
heise online (2012), 09. – http://www.heise.de/newsticker/meldung/
Hackergruppe-veroeffentlicht-eine-Million-iOS-Geraete-IDs-1698373.html
(cited on pages 70 and 85)

[BKK+03] BALAKRISHNAN, H. ; KAASHOEK, M. F. ; KARGER, D. ; MORRIS, R. ; STOICA, I.: Looking
Up Data in P2P Systems. In: Communications of the ACM 46 (2003), Nr. 2, S. 43–48
(cited on page 101)

[Bom12] BOMBACH, G.: A title related to the MapBiquitous project, Technische Universität
Dresden, Assignment Paper (Belegarbeit), 11 2012. – published in parallel to this the-
sis; may currently be in print
(cited on pages 22, 37, 43, 70, 74, 82, 113, 123, 126, 141 and 191)

[Bun49] BUNDESREPUBLIK DEUTSCHLAND: Bundesgesetzblatt. Bd. 23.5.1949|1; 21.7.2010|944:
Grundgesetz für die Bundesrepublik Deutschland vom 23. Mai 1949 (BGBl. I S. 1)
zuletzt geändert durch Gesetz vom 21. Juli 2010 (BGBl. I S. 944) mit Wirkung vom
27. Juli 2010. 21.7.2010|944. Bundesrepublik Deutschland, 1949. – http://www.
gesetze-im-internet.de/bundesrecht/gg/gesamt.pdf
(cited on page 71)

[Bun90] BUNDESREPUBLIK DEUTSCHLAND: Bundesgesetzblatt. Bd. 14.1.2003|66;
14.8.2009|2814: Bundesdatenschutzgesetz in der Fassung der Bekanntmachung vom
14. Januar 2003 (BGBl. I S. 66), das zuletzt durch Artikel 1 des Gesetzes vom 14. Au-
gust 2009 (BGBl. I S. 2814) geändert worden ist. 14.8.2009|2814. Bundesrepublik
Deutschland, 1990. – http://www.gesetze-im-internet.de/bundesrecht/bdsg_
1990/gesamt.pdf
(cited on page 71)

149

http://ffm-online.org/2012/05/30/smart-power-handy-notruf-crowdmap-2/
http://ffm-online.org/2012/05/30/smart-power-handy-notruf-crowdmap-2/
http://www.heise.de/newsticker/meldung/Hackergruppe-veroeffentlicht-eine-Million-iOS-Geraete-IDs-1698373.html
http://www.heise.de/newsticker/meldung/Hackergruppe-veroeffentlicht-eine-Million-iOS-Geraete-IDs-1698373.html
http://www.gesetze-im-internet.de/bundesrecht/gg/gesamt.pdf
http://www.gesetze-im-internet.de/bundesrecht/gg/gesamt.pdf
http://www.gesetze-im-internet.de/bundesrecht/bdsg_1990/gesamt.pdf
http://www.gesetze-im-internet.de/bundesrecht/bdsg_1990/gesamt.pdf

[Bun04] BUNDESREPUBLIK DEUTSCHLAND: Bundesgesetzblatt. Bd. 22.6.2004|1190;
3.5.2012|958: Telekommunikationsgesetz vom 22. Juni 2004 (BGBl. I S. 1190),
das durch Artikel 1 des Gesetzes vom 3. Mai 2012 (BGBl. I S. 958) geändert wor-
den ist. 3.5.2012|958. Bundesrepublik Deutschland, 2004. – http://www.
gesetze-im-internet.de/bundesrecht/tkg_2004/gesamt.pdf
(cited on page 71)

[Bun07] BUNDESREPUBLIK DEUTSCHLAND: Bundesgesetzblatt. Bd. 26.2.2007|179;
31.5.2010|692: Telemediengesetz vom 26. Februar 2007 (BGBl. I S. 179), das zu-
letzt durch Artikel 1 des Gesetzes vom 31. Mai 2010 (BGBl. I S. 692) geändert wor-
den ist. 31.5.2010|692. Bundesrepublik Deutschland, 2007. – http://www.
gesetze-im-internet.de/bundesrecht/tmg/gesamt.pdf
(cited on page 71)

[Bun12] BUNDESVERFASSUNGSGERICHT DER BUNDESREPUBLIK DEUTSCHLAND: Beschluss des
Ersten Senats vom 24. Januar 2012 – 1 BvR 1299/05. court order, 1 2012. – https:
//www.bundesverfassungsgericht.de/entscheidungen/rs20120124_1bvr129905.
html
(cited on page 72)

[DHP+12] DOBREV, M. ; HÖNACK, F. ; POHLE, M. ; SEIDENGLANZ, M. ; TITH, D.: MapBiquitous II
– Efficient Building Server Selection for a Mobile Indoor-Outdoor Location Service on
Android. 06 2012. – http://141.76.40.90/~wiki/index.php/MapBiquitousII
(cited on page 32)

[EG12] ESTELLÉS-AROLAS, E. ; GONZÁLEZ-LADRÓN-DE-GUEVARA, F.: Towards an integrated
crowdsourcing definition. In: Journal of Information Science (2012), 02. – in press;
DOI: 10.1177/016555150000000
(cited on page 41)

[GKN12] GRÜNEBERGER, F. J. ; KESSLER, C. ; NGUYEN, S. H.: MapBiquitous – A mobile in-
door/outdoor location service. 06 2012. – http://141.76.40.90/~wiki/index.php/
MapBiquitous
(cited on pages 32, 36 and 37)

[Gro] GROUP BMW: XFCD – Extended Floating Car Data Potenziale und Durchdringungsra-
ten.
(cited on page 54)

[Gru12] GRUNAU, S.: Konzeption und Evaluation erweiterter Mechanismen zur Positionsbe-
stimmung in Gebäuden, Technische Universität Dresden, Assignment Paper (Belegar-
beit), 06 2012
(cited on pages 33, 51, 74, 85, 113, 126 and 213)

[How06] HOWE, J.: The Rise of Crowdsourcing. In: WIRED magazine 14.06 (2006), June. –
DOI: 10.1145/1400181.1400200
(cited on page 41)

[Keß11] KESSLER, C.: Konzeption und Umsetzung einer gebäudeübergreifenden Indoor/Out-
door-Navigation für das MapBiquitous System, Technische Universität Dresden, As-
signment Paper (Belegarbeit), 2011
(cited on page 32)

[Keß12] KESSLER, C.: Entwicklung eines effizienten Konzeptes für die Verteilung der Verarbei-
tungslogik sowie das Management von Gebäudedaten in MapBiquitous, Technische
Universität Dresden, Thesis (Diplomarbeit), 03 2012
(cited on pages 32, 36, 37 and 38)

[Kir12] KIRSCH, C.: WhatsApp macht sich Authentifizierung leicht. In:
heise online (2012), 09. – http://www.heise.de/security/meldung/
WhatsApp-macht-sich-Authentifizierung-leicht-1703270.html
(cited on page 88)

150 References

http://www.gesetze-im-internet.de/bundesrecht/tkg_2004/gesamt.pdf
http://www.gesetze-im-internet.de/bundesrecht/tkg_2004/gesamt.pdf
http://www.gesetze-im-internet.de/bundesrecht/tmg/gesamt.pdf
http://www.gesetze-im-internet.de/bundesrecht/tmg/gesamt.pdf
https://www.bundesverfassungsgericht.de/entscheidungen/rs20120124_1bvr129905.html
https://www.bundesverfassungsgericht.de/entscheidungen/rs20120124_1bvr129905.html
https://www.bundesverfassungsgericht.de/entscheidungen/rs20120124_1bvr129905.html
http://141.76.40.90/~wiki/index.php/MapBiquitousII
http://141.76.40.90/~wiki/index.php/MapBiquitous
http://141.76.40.90/~wiki/index.php/MapBiquitous
http://www.heise.de/security/meldung/WhatsApp-macht-sich-Authentifizierung-leicht-1703270.html
http://www.heise.de/security/meldung/WhatsApp-macht-sich-Authentifizierung-leicht-1703270.html

[KSV11] KAUFMANN, N. ; SCHULZE, T. ; VEIT, D.: More than fun and money. Worker motiva-
tion in crowdsourcing – A study on mechanical turk. In: Proceedings of the ... (2011),
Nr. 2009, S. 1–11. – http://schader.bwl.uni-mannheim.de/fileadmin/files/
publikationen/Kaufmann_Schulze_Veit_2011_-_More_than_fun_and_money_
Worker_motivation_in_Crowdsourcing_-_A_Study_on_Mechanical_Turk_AMCIS_
2011.pdf
(cited on page 52)

[Lan07] LANDGERICHT BERLIN: Urteil der Zivilkammer 23 vom 6. September 2007 – Ge-
schäftsnummer 23 S 3/07 – 5 C 314/06 Amtsgericht Mitte. court order, 9 2007. –
http://www.daten-speicherung.de/data/Urteil_IP-Speicherung_2007-09-06.
pdf
(cited on page 72)

[Mas11] MASLI, M.: Crowdsourcing Maps. In: Computer 44 (2011), 11, Nr. 11, 90-93. http:
//dx.doi.org/10.1109/MC.2011.338. – DOI 10.1109/MC.2011.338. – ISSN 0018–
9162
(cited on pages 51 and 52)

[MCLP10] MADAN, A. ; CEBRIAN, M. ; LAZER, D. ; PENTLAND, A.: Social Sensing for Epidemi-
ological Behavious Change. In: ACM I.5.4 [Pattern Recognition]: Applications; ACM
H.4.m [Information Systems]: Miscellaneous UbiComp’10 (2010), 09. – ACM Code:
978-1-60558-843-8/10/09
(cited on page 48)

[MYS03] MILLER, M. S. ; YEE, K.-P. ; SHAPIRO, J.: Capability Myths Demolished. (2003), 02. –
http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
(cited on page 95)

[NZZ11] NEIS, P. ; ZIELSTRA, D. ; ZIPF, A.: The Street Network Evolution of Crowdsourced
Maps: OpenStreetMap in Germany 2007-2011. In: Future Internet 4 (2011), 12, Nr.
1, 1-21. http://dx.doi.org/10.3390/fi4010001. – DOI 10.3390/fi4010001. – ISSN
1999–5903
(cited on page 51)

[OV05] OTSASON, V. ; VARSHAVSKY, A.: Accurate gsm indoor localization. In: UbiComp
2005: . . . (2005), Nr. iv, S. 141–158. – http://www.springerlink.com/index/
B6TBWEUG7QM91BWK.pdf
(cited on page 53)

[PMT10] PRIEDHORSKY, R. ; MASLI, M. ; TERVEEN, L.: Eliciting and focusing geographic vol-
unteer work. In: Proceedings of the 2010 ACM conference on Computer supported
cooperative work – CSCW ’10 (2010), 61. http://dx.doi.org/10.1145/1718918.
1718931. – DOI 10.1145/1718918.1718931. ISBN 9781605587950
(cited on page 52)

[QB11] QUINN, A. J. ; BENDERSON, B. B.: Human Computation: A Survey and Taxonomy of a
Growing Field. In: ACM Conference on Human Factors in Computing Systems (CHI).
Vancouver, BC, Canada, May 7-12 2011. – ACM Code: 978-1-4503-0267-8/11/05
(cited on page 41)

[Sch12] SCHMIDT, J.: US-Publishingdienstleister beichtet UDID-Leck. In:
heise online (2012), 09. – http://www.heise.de/security/meldung/
US-Publishingdienstleister-beichtet-UDID-Leck-1704070.html
(cited on page 70)

[Spr11] SPRINGER, T.: MapBiquitous – An Approach for Integrated Indoor/Outdoor Location-
based Services. (2011)
(cited on pages 32 and 33)

References 151

http://schader.bwl.uni-mannheim.de/fileadmin/files/publikationen/Kaufmann_Schulze_Veit_2011_-_More_than_fun_and_money_Worker_motivation_in_Crowdsourcing_-_A_Study_on_Mechanical_Turk_AMCIS_2011.pdf
http://schader.bwl.uni-mannheim.de/fileadmin/files/publikationen/Kaufmann_Schulze_Veit_2011_-_More_than_fun_and_money_Worker_motivation_in_Crowdsourcing_-_A_Study_on_Mechanical_Turk_AMCIS_2011.pdf
http://schader.bwl.uni-mannheim.de/fileadmin/files/publikationen/Kaufmann_Schulze_Veit_2011_-_More_than_fun_and_money_Worker_motivation_in_Crowdsourcing_-_A_Study_on_Mechanical_Turk_AMCIS_2011.pdf
http://schader.bwl.uni-mannheim.de/fileadmin/files/publikationen/Kaufmann_Schulze_Veit_2011_-_More_than_fun_and_money_Worker_motivation_in_Crowdsourcing_-_A_Study_on_Mechanical_Turk_AMCIS_2011.pdf
http://www.daten-speicherung.de/data/Urteil_IP-Speicherung_2007-09-06.pdf
http://www.daten-speicherung.de/data/Urteil_IP-Speicherung_2007-09-06.pdf
http://dx.doi.org/10.1109/MC.2011.338
http://dx.doi.org/10.1109/MC.2011.338
http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
http://dx.doi.org/10.3390/fi4010001
http://www.springerlink.com/index/B6TBWEUG7QM91BWK.pdf
http://www.springerlink.com/index/B6TBWEUG7QM91BWK.pdf
http://dx.doi.org/10.1145/1718918.1718931
http://dx.doi.org/10.1145/1718918.1718931
http://www.heise.de/security/meldung/US-Publishingdienstleister-beichtet-UDID-Leck-1704070.html
http://www.heise.de/security/meldung/US-Publishingdienstleister-beichtet-UDID-Leck-1704070.html

[STW02] SCHÄFER, R. P. ; THIESSENHUSEN, K. U. ; WAGNER, P.: A traffic information system
by means of real-time floating-car data. In: ITS world congress m (2002), S. 1–8. –
http://elib.dlr.de/6499/01/chicago_final.pdf
(cited on page 54)

[Tel07] TELHAN, O.: Social Sensing and Its Display, Massachusetts Institute of Technology,
Master Thesis, 08 2007. – Bilkent Univeristy, Ankara
(cited on page 48)

[Wer12] WERNER, K.: Framework zur Implementierung von Indoor/Outdoor Location-based
Services mit MapBiquitous, Technische Universität Dresden, Thesis (Diplomarbeit), 03
2012
(cited on page 32)

152 References

http://elib.dlr.de/6499/01/chicago_final.pdf

C.1 AUXILIARY MEANS

While creating this thesis, the following auxiliary means were used in order to type-set and re-
search the written submission, as well as to implement the proof-of-concept implementation:

• Adobe Acrobat Pro X (10.1.4)
• Adobe Dreamweaver CS5 (11.0.4993)
• Brockhaus Enzyklopädie, 21. Auflage
• Comprehensive TEXArchive Network, The – http://ctan.org
• Corel Draw PhotoPaint X5 (15.2.0.695)
• dict.leo.org by LEO GmbH (dictionary and online translator)
• Eclipse Indigo and Eclipse Juno as well as their reference guides
• Encyclopædia Britannica, Digital Version
• friends and acquaintances (proofreading)
• Google-Scholar (search-engine)
• Microsoft Office Excel 2010
• Microsoft Office Visio 2010
• Microsoft Office Word 2010
• MiKTEX 2.9 (LATEX typesetting-tool for Windows)
• Notepad++ 6.2 (editor)

with the following run-dialog on Alt+F8 it is very useful:
cmd /c cd /d "$(CURRENT_DIRECTORY)"
&& texify "$(FILE_NAME)"
&& bibtex "$(NAME_PART)"
&& texify --clean --pdf --run-viewer "$(FILE_NAME)"

• OriginLab Origin 6
• Paint.NET 3.5.10
• QR-Code generator by Dominik Dzienia (c©2010) – ‘QR-Code’ or ‘Quick Response Code’ is

a technology and registered trademark of Denso Wave and is subject to patent protection;
Denso Wave has release QR-Code as open source to free usage

• Sächsische Landesbibliothek – Staats- und Universitätsbibliothek Dresden
• Wikipedia, German and English (finding some references)
• Wiktionary (dictionary)
• Wireshark 1.8.3
• XAMPP 1.7.7 with Apache/2.2.21 (Win32), mod_ssl/2.2.21, OpenSSL/1.0.0e, PHP/5.3.8,

mod_perl/2.0.4, Perl/v5.10.1 and mysqlnd 5.0.8-dev-20102224 (Revision 310735)

153

http://ctan.org

154

ACKNOWLEDGEMENTS

Creating this thesis did not only mean stress for me, but – to a certain degree – also for my sur-
roundings, my wife, my friends and co-workers in particular. Therefore, some kind words of ac-
knowledgement should not be held back.

Firstly, I want to thank my wife Karina. Without her persevering endurance, her support, her ad-
vice and her presence each time I needed consolation, I would have never been able to finish
this Thesis. Especially not over a month before the submission deadline. (~~)(@)<3

Definitively an acknowledgement has to be directed to my parents for varying reasons, but I do
not know what to write to express my gratitude. Mama & Papa, you know what I want to tell
you even when it can’t be expressed by written words.

Mr. Prof. Dr. rer. nat. habil. Dr. h. c. Alexander Schill shall be thanked for enabling the swift cre-
ation of this thesis within four and a half month, rather that six month. Who would not jump at
a job offer by their professor presented just at the beginning of the processing time of their the-
sis?

A very special acknowledgement is directed towards my supervising tutor Mr. Dr.-Ing. Thomas
Springer, who fitted this Thesis’ topic towards my personal field of interest and supported the
earlier submission.

Another special acknowledgement is dedicated to Mr. Gerd Bombach. Due to the cohesion in
the tasks of his assignment paper (Belegarbeit) to my thesis, we had to closely work together,
not only sharing ideas and concepts, but also stress due to my shortened processing time.
Gerd, I am very sorry for all the stress and pressure of time I have given you.

Stephan Hermsdorf deserves acknowledgement for his work. Everybody takes an administrator
for granted, but in reality, the entire IT would not work without them. Therefore, I wish to ex-
press my gratitude for Stephan’s good work and his swift support, especially when I requested
more server resources, another virtual machine for testing, etc.

I wish to emphasise the acknowledgement for my proofreaders; without their feedback this
Thesis would most definitely look totally different... Or at least it would be very hard to read.
– These busy readers are: Mr. Dipl.-Phys. Ronald Stübner, Mr. Gregor Tomaszewski, B.Sc., my
wife and for some part my supervising tutor.

Finally, I want to thank the Chair of Computer Networks at the TU Dresden for all the possibili-
ties they gave me during the time I spent creating this Thesis.

155

156

PART IV SUPPLEMENTARY

Contents of this Part
D Proofs and Definitions 161

E Code Snippets 163
E.1 Scheduled Task on CARLOS . 163
E.2 HTTP-Handler Module in the INSANE and BSCSM 164
E.3 getCountry() and associated Functions . 166
E.4 JSON_Handler.php . 167
E.5 Exemplary Definition Block . 168

F Tables 173
F.1 Fingerprinting Overhead Results . 173
F.2 Positioning Overhead Results . 174
F.3 Hardware used for Performance and Scalability Tests 175
F.4 Performance and Scalability Results . 176
F.5 Unaccounted-for Performance and Scalability Results 176

F.5.1 WFS-Series . 176
F.5.2 Fingerprinting Series . 178

G Use Cases 181
G.1 Client→INSANE Communication . 181

G.1.1 Setter . 181
G.1.2 Getter . 184
G.1.3 Retrieval of a User’s own Submitter-ID . 185

G.2 INSANE→Building Server Communication . 186
G.2.1 Setter . 186
G.2.2 Getter . 187

G.3 INSANE←Building Server Communication . 188
G.3.1 Setter . 188

H Interface Definitions 191
H.1 Client→INSANE . 191

H.1.1 INSANE-internal Setter . 191
H.1.2 INSANE-internal Getter . 192
H.1.3 Passed-through to BSCSM Setter . 195
H.1.4 Passed-through to BSCSM Getter . 199

H.2 INSANE→BSCSM . 200
H.2.1 BSCSM-internal Setter . 200
H.2.2 BSCSM-internal Getter . 202
H.2.3 INSANE-endorsed BSCSM-internal/external Setter 204

H.3 INSANE←BSCSM . 205
H.3.1 INSANE-internal Setter . 205

H.4 ∗ →Directory Service . 205
H.4.1 Directory Service Getter . 205

I Unaccounted-for Evaluation Settings 207
I.0.2 WFS Request Series . 210
I.0.3 Fingerprinting Request Series . 212

Figures within this Part
I.0.1 LAN Setting: Conceptual Layout . 208
I.0.2 CARLOS Setting: Conceptual Layout . 208
I.0.3 the-tester.de Setting: Conceptual Layout . 209

I.0.4 hara.tc Setting: Conceptual Layout . 209
I.0.5 LAN Setting: Packet Transmission Statistics, Series I 210
I.0.6 ‘CARLOS’ Setting: Packet Transmission Statistics, Series I 211
I.0.7 the-tester.de Setting: Packet Transmission Statistics, Series I 211
I.0.8 hara.tc Setting: Packet Transmission Statistics, Series I 212
I.0.9 LAN Setting: Packet Transmission Statistics, Series II 213
I.0.10 ‘CARLOS’ Setting: Packet Transmission Statistics, Series II 214
I.0.11 the-tester.de Setting: Packet Transmission Statistics, Series II 214
I.0.12 hara.tc-Setting: Packet Transmission Statistics, Series II 215

Tables within this Part
F.1.1 Results for Fingerprinting Submissions in % . 173
F.2.1 Results for Positioning % . 174
F.3.1 Server Hardware Configuration of the Evaluation . 175
F.3.2 Client Hardware Configuration of the Evaluation . 175
F.4.1 Performance & Scalability Results . 176
F.5.1 WFS results: LAN Setting . 176
F.5.2 WFS results: ‘CARLOS’ Setting . 177
F.5.3 WFS-Results: the-tester.de setting . 177
F.5.4 WFS results: hara.tc Setting . 178
F.5.5 Fingerprinting results: LAN Setting . 178
F.5.6 Fingerprinting results: ‘CARLOS’ Setting . 179
F.5.7 Fingerprinting results: the-tester.de Setting . 179
F.5.8 Fingerprinting Results: hara.tc Setting . 180

160

D PROOFS AND DEFINITIONS

Theorem D.0.1 – Dijkstra’s algorithm

Let G = {V, E} be a directed graph with
• vertices {v1, v2, . . . , vn} ∈ V and
• edges with lengths

{(
vi , vj , l

)
| i , j | l ≥ 0 | vi connected to vj

}
∈ E.

Further, let v1 be the starting vortex and let vn be the (final) destination vortex. Then the algo-
rithm shall work as follows:

1. Mark all vertices white and pool them in a setW = {v1, 0} ∪
⋃n
λ=2 {(vλ,∞)} (the set of

unvisited vertices).
2. Create an empty set B for vertices marked black (the set of visited vertices).
3. From the set of unvisited vertices, extract the vortex with the smallest tentative dis-

tance , ∞ and reduceW by that vortex. Mark the extracted vortex as being grey. IffW
only consists of vertices with tentative distances = ∞, terminate the algorithm with an
‘unreachable final destination’ error.

4. For the vortex currently marked grey, consider all of its white neighbours (i.e. ∈ W).
Calculate the tentative distances from v1 to the white neighbours using the lengths
from the set E. Iff a calculated distance of a vortex is less than the previously recorded
tentative distance of the same vortex in the setW, then overwrite that distance.

5. When all of the white neighbours of the vortex currently marked grey have been con-
sidered, mark the vortex currently marked grey (let this be vgrey) as being black and
reduceW = W \

{(
vgrey, t

)}
, t ∈ N. Add the vortex newly being marked black to the set

of black vertices: B = B ∪
{
vgrey

}
.

6. If the destination vortex vn has been marked black terminate the algorithm and output
the tentative distance of vn as final result (i.e. the shortest route from v1 to vn), other-
wise repeat from step 3.

Proof D.0.2 – Dijkstra’s algorithm

• For a graph with no vertices or only one vortex the algorithm is not applicable.
• For a graph with two vertices:

– Should there be no connecting edge, the algorithm outputs an ‘unreachable final
destination’ error and terminates correctly.

– Should there be at least one connecting edge, the algorithm outputs the shortest
edge’s length as tentative length and terminates correctly.

• For each vortex added to the set of vertices:
– Should the new vortex be the final destination:

161

∗ Should there be no edge connecting to the new vortex, the algorithm outputs
an ‘unreachable final destination’ error and terminates correctly.

∗ Should there be at least one connecting edge, the algorithm calculates a new
tentative length for the new vortex, adding each connecting edge’s length to
each already calculated tentative length of the previously existing vertices.
After finishing these calculations, the algorithm outputs the new vortex’s ten-
tative length and terminates correctly.

– Should the new vortex not be the final destination:
∗ Should there be no edge connecting to the new vortex, the algorithm main-

tains the tentative length ∞ for the new vortex over the entire run of the algo-
rithm.
· Should there be one or more edges connecting to the final destination

only from the new vortex, the algorithm will output an ‘unreachable final
destination’ error and terminates correctly.
· Should there be edges connecting to the final destination from other ver-

tices but the new vortex, the algorithm might terminate either by out-
putting a length, or by outputting an ‘unreachable final destination’ error.
The output depends on the structure of the existing edges, but the algo-
rithm will terminate correctly either way.

∗ Should there be at least one connecting edge to the new vortex, the algo-
rithm calculates a new tentative length for the new vortex, adding each con-
necting edge’s length to each already calculated tentative length of the pre-
viously existing vertices. After finishing these calculations, edges connecting
from the new vortex will be considered:
· Should there be one or more edges connecting to the final destination,

the algorithm will output the shortest tentative distance and terminates
correctly.
· Should there be edges connecting to the final destination from other ver-

tices but the new vortex, the algorithm might terminate either by out-
putting a length, or by outputting an ‘unreachable final destination’ error.
The output depends on the structure of the existing edges, but the algo-
rithm will terminate correctly either way.

As the algorithm is either not applicable or terminates correctly with a distance or an error
for any number of vertices, Theorem D.0.1 is valid.

�

162

E CODE SNIPPETS

E.1 SCHEDULED TASK ON CARLOS

This simple command line batch script restarts Apache Tomcat and PostgreSQL via Windows’
services handler (net services). In the current CARLOS configuration, it is set to run every day
at 04:00h CET.

Programme E.1.1: Simple command line batch file restarting Tomcat and PostgreSQL

1 @echo of f

2 echo .
3 echo ##
4 echo # This i s a scheduled r e s t a r t of PostgreSQL and Apache Tomcat . #
5 echo ##
6 echo .
7 echo .
8 echo Attempt: Stopping PostgreSQL . . .
9 net stop " postgresql−9 .0 − PostgreSQL Server 9.0 "

10 echo Done . − Wait ing 3 seconds before r e s t a r t .
11 timeout 3
12 echo .
13 echo Attempt: Res ta r t i ng PostgreSQL . . .
14 net star t " postgresql−9 .0 − PostgreSQL Server 9.0 "
15 echo Done .
16 echo .
17 echo Wait ing 20 seconds before stopping Tomcat .
18 timeout 20
19 echo .
20 echo Attempt: Stopping Apache Tomcat . . .
21 net stop " Apache Tomcat 6 "
22 echo Done . − Wait ing 3 seconds before r e s t a r t .
23 timeout 3
24 echo .
25 echo Attempt: Res ta r t i ng Apache Tomcat . . .
26 net star t " Apache Tomcat 6 "
27 echo Done .
28 echo .
29 echo Scheduled r e s t a r t s f i nn i shed .

163

E.2 HTTP-HANDLER MODULE IN THE INSANE AND BSCSM

The HTTP_Requests module is a handler module, encapsulating all POST and GET method based
HTTP communication on socket level. As all communication within MapBiquitous is either POST
or GET method based HTTP communication, the implemented handler module only supports
these two types of HTTP methods, but it is extensible to support more methods. However,
other method types (e.g. PUT) do not require support via this handler module as they are used
by none of the MapBiquitous components, and future components can be designed to be based
on POST or GET. Additionally, a ping function is provided as system calls to the target systems’
ping function might be blocked in PHP safemode.

Programme E.2.1: The HTTP handler module in the INSANE and BSCSM

1 func t i on ping ($host , $port =80, $time =2) {
2 $socket = fsockopen ($host , $port , $errorNumber , $E r ro rS t r i ng , $time) ;
3 i f (! $socket) re tu rn fa lse ;
4 fc lose ($socket) ;
5 re tu rn true ;
6 }
7

8 func t i on post_request ($data , $ u r l= " 127.0 .0 .1 :8080 " , $secure=true) {
9 g l o b a l $_CONFIG ;

10 #
11 # The fo l l ow ing HTTP−context MUST conta in the ignore_er ro rs −switch
12 # set to " t rue " , as fopen does not re tu rn the response−body i f the
13 # HTTP−s ta tus i s d i f f e r e n t from "200 OK " . Some methods do a c t a l l y
14 # re tu rn "409 C o n f l i c t " f o r deprecated or "501 Not Implemented "
15 # f o r stub methods . However , such HTTP−packets may s t i l l conta in
16 # r e s u l t s i n t h e i r body tha t are requ i red to cont inue computation .
17 #
18 $params = array (’ h t tp ’ => array (
19 ’method ’ => ’POST ’ ,
20 ’ content ’ => ht tp_bu i l d_query ($data) ,
21 ’ i gno re_e r ro r s ’ => true)) ;
22 i f ($secure && $_CONFIG [" a l lowSel fS igned "])
23 $params [’ s s l ’] = array (’ a l l ow_se l f _s igned ’ => true) ;
24 $context = stream_context_create ($params) ;
25 $connect = @fopen (" h t tp " . ($secure? " s " : " ") . " : / / " . $ur l ,
26 ’ rb ’ , fa lse , $context) ;
27 $status = $http_response_header ;
28 $status = $status [0] ;
29 $status = substr ($status , 9 , 3) ;
30 switch ($status) {
31 case " 200 " : # OK
32 $response = @stream_get_contents ($connect) ;
33 $meta = @stream_get_meta_data ($connect) ;
34 i f ($response === fa l se)
35 throw new Except ion (
36 " E r r o r whi le r e t r i e v i n g response :

" . $php_errormsg ,
37 200) ;
38 re tu rn array ($meta , $response) ;
39 break ;
40 case " 202 " : # Accepted
41 throw new Except ion (
42 " The contacted host accepted the request . " ,
43 202) ;
44 break ;
45 #
46 # Et cetera f o r e r r o r s 302 , 303 , 400 , 403 , 404 , 409 , 500 , 501 ,

164

47 # 502 and 503.
48 #
49 default : throw new Except ion (
50 " The contacted host returned an unexpected code . " ,
51 $status) ;
52 break ;
53 }
54 }
55

56 func t i on get_request ($data , $ u r l= " 127.0 .0 .1 :8080 " , $secure=true) {
57 g l o b a l $_CONFIG ;
58 #
59 # The fo l l ow ing HTTP−context MUST conta in the ignore_er ro rs −switch
60 # set to " t rue " , as fopen does not re tu rn the response−body i f the
61 # HTTP−s ta tus i s d i f f e r e n t from "200 OK " . Some methods do a c t a l l y
62 # re tu rn "409 C o n f l i c t " f o r deprecated or "501 Not Implemented "
63 # f o r stub methods . However , such HTTP−packets may s t i l l conta in
64 # r e s u l t s i n t h e i r body tha t are requ i red to cont inue computation .
65 #
66 $params = array (’ socket ’ => array (’ b indto ’ => ’ 0 : ’ . $port) ,
67 ’ h t tp ’ => array (’method ’ => ’GET ’ ,
68 ’ i gnore_er ros ’ => true)) ;
69 i f ($secure && $_CONFIG [" a l lowSel fS igned "])
70 $params [’ s s l ’] = array (’ a l l ow_se l f _s igned ’ => true ,) ;
71 $context = stream_context_create ($params) ;
72 $getparams = " " ;
73 foreach ($data as $key=>$va l) $getparams .= $key . "= " . $va l . "&" ;
74 $connect = @fopen (" h t tp " . ($secure? " s " : " ") . " : / / " . $ u r l . " ? " . $getparams ,
75 ’ rb ’ , fa lse , $context) ;
76 $status = $http_response_header ;
77 $status = $status [0] ;
78 $status = substr ($status , 9 , 3) ;
79 switch ($status) {
80 case " 200 " : # OK
81 $response = @stream_get_contents ($connect) ;
82 $meta = @stream_get_meta_data ($connect) ;
83 i f ($response === fa l se)
84 throw new Except ion (
85 " E r r o r whi le r e t r i e v i n g response :

" . $php_errormsg ,
86 200) ;
87 re tu rn array ($meta , $response) ;
88 break ;
89 case " 202 " : # Accepted
90 throw new Except ion (
91 " The contacted host accepted the request . " ,
92 202) ;
93 break ;
94 #
95 # Et cetera f o r e r r o r s 302 , 303 , 400 , 403 , 404 , 409 , 500 , 501 ,
96 # 502 and 503.
97 #
98 default : throw new Except ion (
99 " The contacted host returned an unexpected code . " ,

100 $status) ;
101 break ;
102 }
103 }

165

E.3 GETCOUNTRY() AND ASSOCIATED FUNCTIONS

This basic function simply sends the client’s IP-address to hostip.info’s country API and returns
the result of the API request. Though, it requires a few helper functions.

Programme E.3.1: Simple PHP function to retrieve an IP’s geographical region (country)

1 func t i on count ry IP () {
2 #
3 # The returned r e s u l t should be a two− l e t t e r a l l −caps country−code .
4 #
5 re tu rn safeLoad (" ap i . hos t ip . i n f o " , " / country . php? i p= " . get IP ()) ;
6 }

The getIP() function basically tries to determine a client’s actual IP-address, even when using
a proxy. For this, a row of non-default $_SERVER[] variables are tested in lines 9, 10, 15, 18 and
21. As these variable are not included in the PHP-defaults, it depends on the server’s configu-
ration whether these environment variables are set or not. Should they or parts of them exist,
which also depends on whether the client’s proxy transmits proxy headers, the corresponding
value is returned, iff the value is a valid IP-address (determined by the validIP() function). Oth-
erwise, the default $_SERVER["REMOTE_ADDR"] is returned.

Programme E.3.2: PHP function to retrieve a client’s IPv4-address

1 func t i on get IP () {
2 #
3 # Note : Depending on PHP−vers ions , some servers are not ab le to handle
4 # forwarding−headers ; hence , an i s s e t ()− t es t needs to be added to
5 # the non−standard header− f i e l d s .
6 #
7 i f (i sset ($_SERVER [" HTTP_CLIENT_IP "])
8 && (v a l i d I P ($_SERVER [" HTTP_CLIENT_IP "])))
9 re tu rn $_SERVER [" HTTP_CLIENT_IP "] ;

10 i f (i sset ($_SERVER ["HTTP_X_FORWARDED_FOR"]))
11 foreach (explode (" , " ,$_SERVER ["HTTP_X_FORWARDED_FOR"]) as $ ip)
12 i f (v a l i d I P (trim ($ ip))) r e tu rn $ ip ;
13 i f (i sset ($_SERVER ["HTTP_X_FORWARDED"])
14 && v a l i d I P ($_SERVER ["HTTP_X_FORWARDED"]))
15 re tu rn $_SERVER ["HTTP_X_FORWARDED"] ;
16 e l s e i f (i sset ($_SERVER ["HTTP_FORWARDED_FOR"])
17 && v a l i d I P ($_SERVER ["HTTP_FORWARDED_FOR"]))
18 re tu rn $_SERVER ["HTTP_FORWARDED_FOR"] ;
19 e l s e i f (i sset ($_SERVER ["HTTP_FORWARDED"])
20 && v a l i d I P ($_SERVER ["HTTP_FORWARDED"]))
21 re tu rn $_SERVER ["HTTP_FORWARDED"] ;
22 else re tu rn $_SERVER ["REMOTE_ADDR"] ;
23 }

Basically, the validIP($ip) function checks whether a string ($ip) given to the function is actu-
ally an IPv4-address, and whether it is not within a reserved, non-public IPv4-address range.

Programme E.3.3: PHP function to check whether a string is a valid IPv4-address

1 func t i on v a l i d I P ($ ip) {
2 i f (! empty ($ ip) && ip2long ($ ip) !=−1) {
3 $reserved_ ips = array (
4 array (’ 0 . 0 . 0 . 0 ’ , ’ 0.255.255.255 ’) ,

166

5 array (’ 10 .0 .0 .0 ’ , ’ 10.255.255.255 ’) ,
6 array (’ 127 .0 .0 .0 ’ , ’ 127.255.255.255 ’) ,
7 array (’ 169.254.0.0 ’ , ’ 169.254.255.255 ’) ,
8 array (’ 172.16.0 .0 ’ , ’ 172.31.255.255 ’) ,
9 array (’ 192 .0 .2 .0 ’ , ’ 192.0.2.255 ’) ,

10 array (’ 192.168.0.0 ’ , ’ 192.168.255.255 ’) ,
11 array (’ 255.255.255.0 ’ , ’ 255.255.255.255 ’)) ;
12 foreach ($reserved_ ips as $r) {
13 $min = ip2long ($r [0]) ;
14 $max = ip2long ($r [1]) ;
15 i f ((ip2long ($ ip) >= $min) && (ip2long ($ ip) <= $max))
16 re tu rn fa l se ;
17 }
18 re tu rn true ;
19 }
20 else re tu rn fa l se ;
21 }

Finally, the actual connection to the hostip.info country API is realised using the safeLoad($domain,
$path, $timeout) function. Its basic task is to ensure that PHP does not get stuck during a
connection attempt; hence, a socket connection is used to verify target-reachability before actu-
ally conducting a HTTP-based file_get_contents($path) call to the desired resource. Should
the socket connection fail, a correct Boolean false is returned.

Programme E.3.4: PHP function to retrieve a WWW resource safely
1 func t i on safeLoad ($domain , $path , $timeout = 10) {
2 #
3 # This func t i on ensures tha t the remote host i s a c t u a l l y reachable .
4 # Should there be a problem , the func t i on re tu rns Boolean f a l s e .
5 #
6 $fp = fsockopen ($domain , 80 , $errno , $e r r s t r , $timeout) ;
7 i f ($fp) {
8 $out = "GET " . $path . " HTTP / 1 . 1 \ r \ n " ;
9 $out .= " Host : " . $domain . " \ r \ n " ;

10 $out .= " Connection : Close \ r \ n \ r \ n " ;
11 f w r i t e ($fp , $out) ;
12 $resp = " " ;
13 while (! feof ($fp))
14 $resp .= fgets ($fp , 128) ;
15 fc lose ($fp) ;
16 $status_regex = " / HTTP \ / 1 \ . \ d \ s (\ d+) / " ;
17 i f (preg_match ($status_regex , $resp , $matches)
18 && ($matches [1] == 200)
19) {
20 $content = f i le_get_contents (" h t tp : / / " . $domain . $path) ;
21 i f ($content) re tu rn $content ;
22 re tu rn fa lse ;
23 }
24 }
25 re tu rn fa lse ;
26 }

E.4 JSON_HANDLER.PHP

This module handler allows easy replacement of the JSON-handling functions of the INSANEs
and BSCSMs, thus making it possible to circumvent shortcomings of older PHP versions while

167

maintaining usability of the advantages of newer PHP versions. To be more specific, the under-
lying JSON_Library.php provides the json_encode($structure) and json_decode($json)
functions under PHP 4.x through 5.1.x. In PHP 5.2.x and newer these functions are integrated
into PHP.

Programme E.4.1: The JSON-handling module of the INSANEs and BSCSMs

1 <?php
2 i f (! funct ion_exists (’ json_encode ’)) {
3 inc lude_once (getcwd () . " / JSON_Library . php ") ;
4 $GLOBALS[’JSON_OBJECT ’] = new Services_JSON () ;
5 func t i on json_encode ($value) {
6 re tu rn $GLOBALS[’JSON_OBJECT ’]−>encode ($value) ;
7 }
8 func t i on json_decode ($value) {
9 re tu rn $GLOBALS[’JSON_OBJECT ’]−>decode ($value) ;

10 }
11 }
12

13 func t i on isJSON ($ s t r i n g) {
14 t r y {
15 $s t ruc tu re = json_decode ($ s t r i n g) ;
16 }
17 catch (Except ion $e) {
18 re tu rn fa l se ;
19 }
20 re tu rn (i s_object ($s t ruc tu re)) ? true : fa lse ;
21 }
22

23 func t i on fromJSON ($json) {
24 i f (isJSON ($json)) r e tu rn json_decode ($json , true) ;
25 re tu rn fa lse ;
26 }
27

28 func t i on toJSON ($s t ruc tu re) {
29 re tu rn json_encode ($s t ruc tu re) ;
30 }
31 ?>

E.5 EXEMPLARY DEFINITION BLOCK

Incidentally, modularising the INSANE as well as BSCSM source code while maintaining ‘human
readability’ of the methods offered required some crafty definitions of scanable syntax. In the
end, each method can be automatically loaded into the running INSANE or BSCSM by strictly
following the newly created definition block syntax, as it is completely parsable153 by PHP. The
structure is rather simple, relying on keywords such as ‘DEFINITION BLOCK’ or ‘@return’, delim-
iters such as ‘||’ or ‘|||’, as well as PHP’s own serialisation syntax, allowing automated usage
of PHP’s serialize and deserialize functions. An exemplary method definition block using
the defined syntax is shown in Programme E.5.1.

153There are controversial discussions dealing with the existence of the noun ‘parsability’ and the corresponding adjec-
tive ‘parsable’ (or ‘parseable’). However, the author of this thesis assumed the adjective to exist. Should it not exist,
the meaning defined by Noam Chomsky shall be valid: ‘The ability to assign a structural analysis to sentence’.

168

Programme E.5.1: An exemplary method definition block

1 #
2 # Define the output type .
3 #
4 header (" Content−Type : tex t / p l a i n ") ;
5 #
6 # DEFINITION BLOCK
7 #
8 # @stub | | | The fo l l ow ing statement i s e i t h e r " t rue " or " f a l s e "
9 $isStub = true ;

10 i f ($ isStub) header (" HTTP / 1 . 1 501 Not Implemented ") ;
11 #
12 # @dep | | | The fo l l ow ing statement e i t h e r " t rue " or " f a l s e "
13 $isDep = fa lse ;
14 i f ($isDep) {
15 header (" HTTP / 1 . 1 409 C o n f l i c t ") ;
16 pr int (" Th is method i s deprecated ! ") ;
17 exi t ;
18 }
19 #
20 # @desc | | | A d e s c r i p t i v e tex t (HTML al lowed)
21 # @input | | | a : 2 : { i : 0 ; s : 3 8 : " (Type) | | 4 | | var1 | | V a r i a b l e 1 (length

4) " ; i : 1 ; s : 3 8 : " (Type) | | 9 | | var2 | | V a r i a b l e 2 (len th 9) " ; }
22 # @return | | | a : 1 : { i : 0 ; s : 3 0 : " HTTP / 1 . 1 200 OK | | Normal output " ; }
23 # @throws | | | a : 2 : { i : 0 ; s : 7 9 : " HTTP / 1 . 1 400 Bad Request | | The submitted POST

data do not match the expectat ions " ; i : 1 ; s : 5 0 : " HTTP / 1 . 1 502 Bad
Gateway | | A r e l a y i n g e r r o r occurred " ; }

24 # @author | | | Tenshi Hara [hara@inf . tu−dresden . de]
25 # @date | | |2012−10−04
26 #
27 # END OF DEFINITION BLOCK
28 #
29 ##
30 ##
31 ##
32 #
33 # Define expected v a r i a b l e s
34 #
35 $expected_var iab les = array (
36 " method " , # t h i s one i s a g l o b a l v a r i a b l e and requ i red !
37 " var1 " ,
38 " var2 ") ;
39 sort ($expected_var iab les) ;
40 #
41 # Automat i ca l l y check whether the submitted v a r i a b l e s match
42 # the expected v a r i a b l e s .
43 #
44 # ########################
45 # # MODULE LOADING BLOCK #
46 # ##
47 # Load any module requ i red f o r processing here #
48 require (getcwd () . " / methods / Submission_Checker . php ") ; #
49 # ##
50 # # Make sure these modules e x i s t as requ i re () #
51 # # h a l t s the PHP execut ion i f the module f i l e #
52 # # could not be inc luded i n t o the runtime . #
53 # ##
54 #
55 # THIS TEST NEEDS TO BE DEFINED MANUALLY!
56 #
57 # ###

169

58 # # In t h i s example , there are no formal requirements to the va r i ab l es , #
59 # # but should there be some, they should be checked here . #
60 # ###
61 #
62 i f ((st r len ($method_values [" var1 "]) > 4)
63 | | (st r len ($method_values [" var2 "]) > 9)
64) {
65 header (" HTTP / 1 . 1 400 Bad Request ") ;
66 i f ($_CONFIG [" debug "]) {
67 pr int (" E r r o r i n l i n e " . __LINE__ . " : " .
68 ((st r len ($method_values [" var1 "]) >4)? " (var1 too long) " : " ") .
69 ((st r len ($method_values [" var2 "]) >9)? " (var2 too long) " : " ")
70) ;
71 }
72 f lush () ;
73 exi t ;
74 }
75 #
76 # S t a r t i n g from t h i s l i n e , the a c t u a l module source code fo l lows .
77 #

The automatically processed definition block part used to generate human readable method de-
scriptions starts in line 6 and ends in line 27. It contains information about whether the method
created by the module is a stub, whether it is deprecated, its input and return values, as well as
errors to be expected to be thrown. It should be noted that the list of thrown errors normally
should only contain errors that are expectable and generated during the course of the com-
putation. Possible but unexpected errors (such as ‘HTTP/1.1 500 Internal Server Error’) should
not be listed within the ‘@throws’ serialisation. For the automated check of variable complete-
ness154, the set of expected variables is defined in line 35. It is automatically processed in the
‘Submission_Checker’ module that is bound in line 48, resulting in the creation of the array
$method_values which is e.g. used in the manual check of compliance with formal require-
ments towards the input variables in line 62. The automated processing – that basically consists
of de-serialisations and loops – can follow Programme E.5.2.

Programme E.5.2: An exemplary parser for method definition blocks

1 #
2 # Assume the contents of the method f i l e are i n $ f i l e c o n t e n t s . . .
3 #
4 $methodIsStub = strpos ($ f i l econ ten ts , " i sStub = t rue ; ") ;
5 $methodIsDep = strpos ($ f i l econ ten ts , " isDep = t rue ; ") ;
6 $ f i l e c o n t e n t s = substr ($ f i l econ ten ts ,
7 strpos ($ f i l econ ten ts , " # @desc ") ,
8 strpos ($ f i l econ ten ts , " # END OF DEFINITION BLOCK") −39) ;
9 $ f i l e c o n t e n t s = explode ("

10 # @" , $ f i l e c o n t e n t s) ;
11 func t i on a r r aycu t ($value) re tu rn substr ($value , strpos ($value , " | | | ") +3) ;
12 $ f i l e c o n t e n t s = array_map (’ a r r a ycu t ’ , $ f i l e c o n t e n t s) ;
13 #
14 # $ f i l e c o n t e n t s now i s an a r r ay of s e r i a l i s e d a r r ays
15 #
16 # Load input v a r i a b l e s :
17 $ f i l e c o n t e n t s [1] = u n s e r i a l i z e ($ f i l e c o n t e n t s [1]) ;
18 foreach ($ f i l e c o n t e n t s [1] as $ inputva r) {
19 $ inputva r = explode (" | | " , $ inpu tva r) ;
20 # Do something with the inpu t v a r i a b l e s . . .
21 # Note : $ inputva r i s an a r r ay having
22 # ∗ $ inputva r [0] : the type of the v a r i a b l e
23 # ∗ $ inputva r [1] : the maximum length of the v a r i a b l e

154I.e. if all variables expected as input are present in the POST header of the HTTP request calling the method.

170

24 # ∗ $ inputva r [2] : the name of the v a r i a b l e
25 # ∗ $ inputva r [3] : the v a r i a b l e ’ s d e s c r i p t i o n
26 }
27 #
28 # Load re tu rn va lues :
29 $ f i l e c o n t e n t s [2] = u n s e r i a l i z e ($ f i l e c o n t e n t s [2]) ;
30 foreach ($ f i l e c o n t e n t s [2] as $returns) {
31 $returns = explode (" | | " , $ re turns) ;
32 # Do something with the re tu rn va lues . . .
33 # Note : $returns i s an a r r ay having
34 # ∗ $returns [0] : the re tu rn va lue
35 # ∗ $returns [1] : the re tu rn va lue ’ s d e s c r i p t i o n
36 }
37 #
38 # Load the throwable e r r o r s :
39 $ f i l e c o n t e n t s [3] = u n s e r i a l i z e ($ f i l e c o n t e n t s [3]) ;
40 foreach ($ f i l e c o n t e n t s [3] as $throws) {
41 $throws = explode (" | | " , $throws) ;
42 # Do something with the throwable e r r o r s . . .
43 # Note : $throws i s an a r r ay having
44 # ∗ $throws [0] : the thrown e r r o r
45 # ∗ $throws [1] : the thrown e r r o r ’ s d e s c r i p t i o n
46 }
47 #
48 # The author of the module i s i n $ f i l e c o n t e n t s [4]
49 #
50 # Load the date of the module :
51 $ f i l e c o n t e n t s [5] = substr ($ f i l e c o n t e n t s [5] , 0 , (strpos ($ f i l e c o n t e n t s [5] , "
52 ") > 0) ? strpos ($ f i l e c o n t e n t s [5] , "
53 ") : st r len ($ f i l e c o n t e n t s [5])) ;

171

172

F TABLES

F.1 FINGERPRINTING OVERHEAD RESULTS

Table F.1.1: Results for Fingerprinting Submissions in %

Samples↔INSANE Overhead Client↔INSANE Total Overhead

1 22.59 173.80
(173.54) (475.71)

2 12.41 145.82
(123.11) (367.21)

3 6.52 129.62
(93.91) (304.40)

4 2.68 119.06
(74.87) (263.44)

5 −0.02 111.62
(61.48) (234.61)

6 −2.02 106.11
(51.53) (213.23)

7 −3.57 101.85
(43.87) (196.73)

8 −4.80 98.47
(37.77) (183.62)

9 −5.80 95.72
(32.81) (172.94)

10 −6.63 93.44
(28.69) (164.09)

20 −10.74 82.15
(8.35) (120.32)

30 −12.25 77.97
(0.82) (104.12)

50 −13.53 74.46
continued on next page{

173

{ continued from previous page

Samples↔INSANE Overhead Client↔INSANE Total Overhead

(−5.51) (90.50)

100 −14.53 71.72
(−10.45) (79.88)

Results are based on actual communication using the INSANE at insane.the-tester.de.

F.2 POSITIONING OVERHEAD RESULTS

Table F.2.1: Results for Positioning in %

Samples↔INSANE Overhead Client↔INSANE Total Overhead

1 56.75 221.11
(257.44) (622.49)

2 48.24 202.94
(218.82) (544.12)

3 41.94 189.51
(190.28) (486.19)

4 37.10 179.19
(168.33) (441.63)

5 33.27 170.99
(150.91) (406.29)

6 30.15 164.34
(136.76) (377.57)

7 27.56 158.82
(125.04) (353.78)

8 25.39 154.18
(115.17) (333.75)

9 23.53 150.22
(106.74) (316.64)

10 21.93 146.79
(99.47) (301.87)

20 13.04 127.82
(59.14) (220.03)

30 9.28 119.80
(42.08) (185.41)

50 5.88 112.55
(26.69) (154.16)

100 3.07 106.56
(13.94) (128.29)

Results are based on actual communication using the INSANE at insane.the-tester.de.

174

insane.the-tester.de
insane.the-tester.de

F.3 HARDWARE USED FOR PERFORMANCE AND SCALABILITY
TESTS

Table F.3.1: The server hardware configuration of the evaluation

BSCSMs & INSANE on ‘CARLOS’ INSANE in LAN the-tester.de hara.tc

Type shared dedicated Cloud-VPS Cloud-VPS

CPU-Type Xeon E5620 Core 2 Duo L7500 n/a (VPS) n/a (VPS)

CPU-Speed up to 2.4 GHz up to 1.6 GHz up to 3.0 GHz up to 3.0 GHz

RAM 2 GB 2 GB up to 4 GB up to 4 GB

Operating System MS Win 5.2.3790, x32 MS Win 5.2.2600.5512, x32 Linux 2.6.32-41-server, x64 Linux 2.6.32-41-server, x64

WWW-server Apache httpd 2.2.14 Apache httpd 2.2.21 Apache httpd 2.0.? Apache httpd 2.0.?

Script-Language PHP 5.2.6 PHP 5.3.8 PHP/5.2.12-nmm4 PHP/5.2.12-nmm4

Database MySQL 5.1.? MySQL 5.0.8 MySQL 5.1.63 MySQL 5.1.63

Downlink 1 GBit
s 500 MBit

s 60 MBit
s 60 MBit

s

Uplink < 600 MBit
s 500 MBit

s 55 MBit
s 55 MBit

s

Avg. Idling Load ≥ 0.6155 < 0.1 < 0.1 < 0.1

Information are provided as available.

Table F.3.2: The client hardware configuration of the evaluation

Host 1 Host 2 Host 3

Type 1024 virtual devices 512 virtual devices 8976 virtual devices

CPU-Type Core i7-2640M Core 2 Duo L7500 n/a (VPS)

CPU-Speed up to 2.8 GHz up to 1.6 GHz up to 3.0 GHz

RAM 8 GB 2 GB up to 4 GB

Operating System MS Win 6.1.7601, x64 MS Win 5.2.2600.5512, x32 Linux 2.6.32-41-server, x64

Simulator-Language C# C# Perl

Downlink 5880 kBit
s 5880 kBit

s 60 MBit
s

Uplink 192 kBit
s 192 kBit

s 55 MBit
s

Avg. Script-Load ≥ 0.92 ≥ 0.97 ≥ 0.85

Information are provided as available.

155It remains unconceivable why ‘CARLOS’ has such a high load while idling.

175

F.4 PERFORMANCE AND SCALABILITY RESULTS

Table F.4.1: Performance & Scalability Results

Performance & Scalability Results

P
a
ra

ll
e
l

C
li
e
n

t

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

IN
S

A
N

E

IN
S

A
N

E

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

B
S

C
S

M

B
S

C
S

M

R
e
p

li
e
s

R
e
p

li
e
s

re
c
e
iv

e
d

b
y

IN
S

A
N

E

IN
S

A
N

E

R
e
p

li
e
s

R
e
p

li
e
s

re
c
e
iv

e
d

b
y

C
li
e
n

t

‘2
0

0
O

K
’

s
e
n

t
b

y

IN
S

A
N

E

‘2
0

0
O

K
’

re
c
e
iv

e
d

b
y

C
li
e
n

t

b
y

C
li
e
n

t

‘5
0
2

B
a
d

G
a
te

w
a
y

’

s
e
n

t
b

y

IN
S

A
N

E

‘5
0
2

B
a
d

G
a
te

w
a
y

’

re
c
e
iv

e
d

b
y

C
li
e
n

t

R
e
p

ly
ti

m
e
d

o
u

t
o

n
C

li
e
n

t

1 1 1 1 1 1 1 1 1 1 0 0 0

5 5 5 5 5 5 5 5 5 5 0 0 0

10 10 10 10 10 10 10 10 10 10 0 0 0

50 50 50 50 50 50 50 50 50 50 0 0 0

100 99 99 98 98 98 99 99 98 98 1 1 1

500 497 497 494 494 491 497 494 491 488 6 6 6

1000 994 994 988 988 982 994 988 982 977 12 11 12

5000 4962 4962 4924 4924 4887 4962 4924 4887 4862 75 62 76

10000 5109 5109 5068 5068 5027 5109 5068 5027 5001 82 67 4932
All numbers are averaged of ten series of measurements.

F.5 UNACCOUNTED-FOR PERFORMANCE AND SCALABILITY RE-
SULTS

F.5.1 WFS-Series

Table F.5.1: WFS results for the LAN setting

LAN Setting

Parallel

Client

Requests

Requests

received by

INSANE

INSANE

Requests

Requests

received by

BSCSM

BSCSM

Replies

Replies

received by

INSANE

INSANE

Replies

Replies

received by

Client

‘200 OK’ ‘502 Bad

Gateway’

1 1 1 1 1 1 1 1 1 0

5 5 5 5 5 5 5 5 0

10 10 10 10 10 10 10 10 10 0

50 50 50 26 26 26 50 50 13 37

100 100 100 49 49 49 100 100 24 76

500 500 500 187 187 187 500 500 70 430

1000 1000 1000 343 343 343 1000 1000 117 883

5000 5000 5000 1312 1312 1312 5000 5000 344 4656

10000 10000 10000 2401 2401 2401 10000 10000 576 9424
All numbers are averaged of ten series of measurements.

176

Table F.5.2: WFS results for the ‘CARLOS’ setting

the-tester.de setting

Parallel

Client

Requests

Requests

received by

INSANE

INSANE

Requests

Requests

received by

BSCSM

BSCSM

Replies

Replies

received by

INSANE

INSANE

Replies

Replies

received by

Client

‘200 OK’ ‘502 Bad

Gateway’

1 1 1 1 1 1 1 1 1 0

5 5 5 5 5 5 5 5 5 0

10 10 10 10 10 10 10 10 10 0

50 26 26 25 25 24 26 26 24 2

100 49 49 48 48 47 49 49 47 2

500 187 187 181 181 176 187 166 156 10

1000 343 343 332 332 322 343 299 281 18

5000 1312 1312 1263 1263 1216 1312 1090 1010 80

10000 2401 2401 2306 2306 2215 2401 1962 1810 152
All numbers are averaged of ten series of measurements.

Table F.5.3: WFS results for the the-tester.de setting

‘CARLOS’ setting

Parallel

Client

Requests

Requests

received by

INSANE

INSANE

Requests

Requests

received by

BSCSM

BSCSM

Replies

Replies

received by

INSANE

INSANE

Replies

Replies

received by

Client

‘200 OK’ ‘502 Bad

Gateway’

1 1 1 1 1 1 1 1 1 0

5 5 5 5 5 5 5 5 5 0

10 10 10 10 10 10 10 10 10 0

50 50 50 27 27 27 50 50 25 25

100 85 85 42 42 42 85 79 39 40

500 403 403 157 157 136 403 358 120 238

1000 791 791 283 283 242 791 691 211 480

5000 3732 3732 1033 1033 833 3732 3102 692 2410

10000 5021 5021 1275 1275 1009 5021 4104 824 3280
All numbers are averaged of ten series of measurements.

177

Table F.5.4: WFS results for the hara.tc setting

hara.tc setting

Parallel

Client

Requests

Requests

received by

INSANE

INSANE

Requests

Requests

received by

BSCSM

BSCSM

Replies

Replies

received by

INSANE

INSANE

Replies

Replies

received by

Client

‘200 OK’ ‘502 Bad

Gateway’

1 1 1 1 1 1 1 1 1 0

5 5 5 5 5 5 5 5 5 0

10 10 10 10 10 10 10 10 10 0

50 50 50 26 26 26 50 50 26 24

100 84 84 41 41 41 84 77 38 39

500 393 393 146 146 130 393 338 116 222

1000 771 771 263 263 231 771 649 203 446

5000 3612 3612 943 943 790 3612 2854 662 2192

10000 5113 5113 1220 1220 1006 5113 3955 830 3125
All numbers are averaged of ten series of measurements.

F.5.2 Fingerprinting Series

Table F.5.5: Fingerprinting results for the LAN setting

LAN Setting

P
a
ra

ll
e
l

C
li
e
n

t

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

IN
S

A
N

E

IN
S

A
N

E

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

B
S

C
S

M

B
S

C
S

M

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

F
P

S
e
rv

e
r

B
S

C
S

M

R
e
p

li
e
s

R
e
p

li
e
s

re
c
e
iv

e
d

b
y

IN
S

A
N

E

IN
S

A
N

E

R
e
p

li
e
s

R
e
p

li
e
s

re
c
e
iv

e
d

b
y

C
li
e
n

t

‘2
0

0
O

K
’

‘5
0
2

B
a
d

G
a
te

w
a
y

’

A
c
tu

a
ll
y

S
u

c
c
e
s
s
fu

l

F
in

g
e
rp

ri
n

ts

1 1 1 1 8 8 1 1 1 1 1 0 1

5 5 5 5 40 40 5 5 5 5 5 0 5

10 10 10 10 80 64 10 10 10 10 10 0 6

50 50 50 25 200 138 25 25 50 50 13 37 14

100 100 100 46 368 241 46 46 100 100 22 78 25

500 500 500 173 1384 775 173 173 500 500 64 436 81

1000 1000 1000 314 2512 1334 314 314 1000 1000 107 893 139

5000 5000 5000 1177 9416 3460 1177 1177 5000 5000 308 4692 362

10000 10000 10000 2138 17104 4830 2138 2138 10000 10000 513 9487 505

All numbers are averaged of ten series of measurements.

178

Table F.5.6: Fingerprinting results for the ‘CARLOS’ setting

‘CARLOS’ setting

P
a
ra

ll
e
l

C
li
e
n

t

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

IN
S

A
N

E

IN
S

A
N

E

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

B
S

C
S

M

B
S

C
S

M

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

F
P

S
e
rv

e
r

B
S

C
S

M

R
e
p

li
e
s

R
e
p

li
e
s

re
c
e
iv

e
d

b
y

IN
S

A
N

E

IN
S

A
N

E

R
e
p

li
e
s

R
e
p

li
e
s

re
c
e
iv

e
d

b
y

C
li
e
n

t

‘2
0

0
O

K
’

‘5
0
2

B
a
d

G
a
te

w
a
y

’

A
c
tu

a
ll
y

S
u

c
c
e
s
s
fu

l

F
in

g
e
rp

ri
n

ts

1 1 1 1 8 8 1 1 1 1 1 0 1

5 5 5 5 40 40 5 5 5 5 5 0 5

10 10 10 10 80 64 10 10 10 10 10 0 6

50 26 26 25 200 138 25 24 26 26 24 2 14

100 48 48 47 376 246 47 46 48 48 46 2 25

500 183 183 178 1424 797 178 173 183 162 153 9 83

1000 335 335 325 2600 1381 325 315 335 292 275 17 144

5000 1277 1277 1229 9832 3613 1229 1183 1277 1061 983 78 378

10000 2333 2333 2241 17928 4803 2241 2152 2333 1906 1759 147 502

All numbers are averaged of ten series of measurements.

Table F.5.7: Fingerprinting results for the the-tester.de setting

the-tester.de setting

P
a
ra

ll
e
l

C
li
e
n

t

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

IN
S

A
N

E

IN
S

A
N

E

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

B
S

C
S

M

B
S

C
S

M

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

F
P

S
e
rv

e
r

B
S

C
S

M

R
e
p

li
e
s

R
e
p

li
e
s

re
c
e
iv

e
d

b
y

IN
S

A
N

E

IN
S

A
N

E

R
e
p

li
e
s

R
e
p

li
e
s

re
c
e
iv

e
d

b
y

C
li
e
n

t

‘2
0

0
O

K
’

‘5
0
2

B
a
d

G
a
te

w
a
y

’

A
c
tu

a
ll
y

S
u

c
c
e
s
s
fu

l

F
in

g
e
rp

ri
n

ts

1 1 1 1 8 8 1 1 1 1 1 0 1

5 5 5 5 40 40 5 5 5 5 5 0 5

10 10 10 10 80 64 10 10 10 10 10 0 6

50 50 50 28 224 154 28 28 50 50 26 24 16

100 82 82 42 336 220 42 42 82 76 39 37 23

500 385 385 156 1248 699 156 136 385 342 120 222 73

1000 753 753 281 2248 1194 281 240 753 658 209 449 124

5000 3510 3510 1024 8192 3010 1024 826 3510 2917 686 2231 315

10000 4998 4998 1343 10744 3746 1343 1062 4998 4085 868 3217 392

All numbers are averaged of ten series of measurements.

179

Table F.5.8: Fingerprinting results for the hara.tc setting

hara.tc setting

P
a
ra

ll
e
l

C
li
e
n

t

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

IN
S

A
N

E

IN
S

A
N

E

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

B
S

C
S

M

B
S

C
S

M

R
e
q

u
e
s
ts

R
e
q

u
e
s
ts

re
c
e
iv

e
d

b
y

F
P

S
e
rv

e
r

B
S

C
S

M

R
e
p

li
e
s

R
e
p

li
e
s

re
c
e
iv

e
d

b
y

IN
S

A
N

E

IN
S

A
N

E

R
e
p

li
e
s

R
e
p

li
e
s

re
c
e
iv

e
d

b
y

C
li
e
n

t

‘2
0

0
O

K
’

‘5
0
2

B
a
d

G
a
te

w
a
y

’

A
c
tu

a
ll
y

S
u

c
c
e
s
s
fu

l

F
in

g
e
rp

ri
n

ts

1 1 1 1 8 8 1 1 1 1 1 0 1

5 5 5 5 40 40 5 5 5 5 5 0 5

10 10 10 10 80 64 10 10 10 10 10 0 6

50 50 50 27 216 149 27 27 50 50 27 23 15

100 85 85 42 336 220 42 42 85 78 39 39 23

500 405 405 154 1232 690 154 137 405 348 122 226 72

1000 796 796 278 2224 1181 278 244 796 670 214 456 123

5000 3762 3762 1014 8112 2981 1014 850 3762 2973 712 2261 312

10000 5033 5033 1243 9944 3467 1243 1025 5033 3893 845 3048 362

All numbers are averaged of ten series of measurements.

180

G USE CASES

In this chapter a rather comprehensive list of use cases is provided for the interested reader.
However, the use cases are very abstract and are far from implementation details, as they are
supposed to define the conceptual goals, rather than the implementation goals for the crowd-
sourcing extension of the MapBiquitous project. In the following the terms client and device are
considered to be synonymous.

G.1 CLIENT→INSANE COMMUNICATION

G.1.1 Setter

Registration of a User

A user, may they want to participate in the crowdsourcing process for the first time or have they
participated before and cancelled their participation, decides to participate in the crowdsourcing
process. In order to participate, a submitter-ID is required, which is automatically issued as soon
as the user uses a client and contacts an INSANE.

Should the INSANE not be responsible for the DHT area the username is associated with, the
INSANE supports lookup of the responsible INSANE or an INSANE that may be able to lookup
or know the responsible INSANE. Lookup is continued until the responsible INSANE is con-
tacted.

The INSANE responsible for the DHT area the username is associated with registers the user
by having been sent a username, a password, a device identification (client-ID) as well as some
device specifications and stores these information. The client-ID is used to create a correspond-
ing client-account at the same time. Should the user-account (or a ‘similar’ one) already exist,
the use case ‘registration of a device’ applies, otherwise a distribution-wide unique user-ID is
calculated and a corresponding submission-ID generated. The user is notified of the creation by
returning positive feedback, otherwise negative feedback is returned.

181

Registration of a Device

Having a user-account on an INSANE responsible for the DHT area the username is associated,
the user needs to register their device(s) in order to use the system. For this, the same server
interface that is also used for the ‘registration of a user’ use case is used.

Should the INSANE not be responsible for the DHT area the username is associated with, the
INSANE supports lookup of the responsible INSANE or an INSANE that may be able to lookup
or know the responsible INSANE. Lookup is continued until the responsible INSANE is con-
tacted.

There are several conceivable scenarios:

• The provided client-ID is not known to the INSANE. – The INSANE then creates a corre-
sponding client profile and associates it with the user-account. Afterwards, positive feed-
back is returned to the user.

• The provided client-ID is already registered with a client profile that is associated with
the user-account of the contacting user. – The INSANE returns a negative feedback to the
user.

• The provided client-ID is already registered with a client profile that is not associated with
the user-account of the contacting user. – The INSANE then returns a denial of registration
to the user.

Submission of Crowdsourcing Data

The user is required to have a valid user-profile on a responsible INSANE.

Should the contacted INSANE not be responsible for the DHT area the username is associated
with, the INSANE supports lookup of the responsible INSANE or an INSANE that may be able to
lookup or know the responsible INSANE. Lookup is continued until the responsible INSANE is
contacted.

Should there be no valid user-profile on the responsible INSANE, a negative feedback is returned
to the user, otherwise the password and signature of the submission are validated. Should val-
idation fail, the user is sent a denial of processing feedback, else the submission is stored on
the INSANE and forwarded to the building server affected by the submission. The forward is
stripped down to the actual crowdsourcing data and then amended with the submitter-ID of
the user and then signed by the INSANE. Iff the building server accepts the submission, the
INSANE returns a positive feedback to the user, otherwise negative feedback is returned.

Deletion of one Submission of a User

The user is required to have a valid user-profile on a responsible INSANE.

Should the contacted INSANE not be responsible for the DHT area the username is associated
with, the INSANE supports lookup of the responsible INSANE or an INSANE that may be able to
lookup or know the responsible INSANE. Lookup is continued until the responsible INSANE is
contacted.

Should there be no valid user-profile on the responsible INSANE, a negative feedback is returned
to the user, otherwise the password and signature of the submission are validated. Should val-
idation fail, the user is sent a denial of processing feedback, else the provided submission-ID is

182

cross-referenced against the submission database on the INSANE. Should no submission be as-
sociated with the submission-ID the user is returned negative feedback, otherwise the building
server affected by the submission is contacted and deletion of the submission on the building
server is requested. Iff the building server accepts the deletion of the submission, the INSANE
deletes the corresponding submission data from its database and returns a positive feedback to
the user, otherwise negative feedback is returned.

Deletion of all Submissions of a User

Deletion of all submissions of a user is archived by multiple application of the ‘deletion of one
submission of a user’ use case until no submission associated with the user remains in the
database of the INSANE.

Deletion of a User

The user is required to have a valid user-profile on a responsible INSANE.

Should the contacted INSANE not be responsible for the DHT area the username is associated
with, the INSANE supports lookup of the responsible INSANE or an INSANE that may be able to
lookup or know the responsible INSANE. Lookup is continued until the responsible INSANE is
contacted.

Should there be no valid user-profile on the responsible INSANE, a negative feedback is returned
to the user, otherwise the password and signature are validated. Should validation fail, the user
is sent a denial of processing feedback, else all submissions of the user a deleted as described
in the ‘deletion of all submissions of a user’ use case. Failed deletions are ignored. Afterwards
all device-profiles associated with the user are deleted (also ignoring errors) as described in the
‘deletion of a device’ use case; then, the user-profile is deleted from the database. A positive
feedback is returned to the user.

Deletion of a Device

The user is required to have a valid user-profile on a responsible INSANE.

Should the contacted INSANE not be responsible for the DHT area the username is associated
with, the INSANE supports lookup of the responsible INSANE or an INSANE that may be able to
lookup or know the responsible INSANE. Lookup is continued until the responsible INSANE is
contacted.

Should there be no valid user-profile on the responsible INSANE, a negative feedback is returned
to the user, otherwise the password and signature are validated. Should validation fail, the user
is sent a denial of processing feedback, else the provided client-ID is cross-referenced against
the database-table of devices on the INSANE. Should no device be associated with the client-ID
the user is returned negative feedback, otherwise the corresponding device-profile is deleted
and a positive feedback is returned to the user.

Correction of a Submission

Correction of a submission is achieved by application of the ‘deletion of one submission of a
user’ use case followed by application of the ‘submission of crowdsourcing data’ use case with
the corresponding corrected data.

183

G.1.2 Getter

Retrieval of the INSANE responsible for a User

A user may request information on their responsible INSANE by sending their username to any
INSANE they know. The contacted INSANE determines the geographic location based on the
user’s IP-address. Iff the INSANE does not know the geographic region, the region of the con-
tacted INSANE is assumed. Within the region, the INSANE looks up the responsible INSANE
based on the hashed username and the distributed hash table of INSANEs. Should the responsi-
ble INSANE not be known, the INSANE returns information on an INSANE closer to the respon-
sible INSANE with respect to the distributed hash table.

Comment

It is important to have the geographic region – this should be the country for obvious rea-
sons – checked first, as the contacted INSANE may be responsible for the user in the region
the contacted INSANE is situated at. However, the user may reside outside of the INSANE’s
region, in which case the INSANE would falsely declare itself responsible.

Retrieval of a List of INSANEs

A user contacts an INSANE. In return, the contacted INSANE replies with all INSANEs known to
the contacted INSANE.

Anonymous Retrieval of Data from a Building Server

Any getter interface on building servers available for direct client access can be proxy-accessed
via an INSANE. The same information required to use the interface on the building server has to
be provided to the INSANE’s interface. The INSANE forwards the user’s request to the building
server, receives the reply from the building server and forwards the reply to the user. No crowd-
sourcing related information is exchanged between INSANE and building server and the user’s
identity (especially the IP-address) is concealed from the building server.

User-specific Retrieval of Data from a Building Server

The user is required to have a valid user-profile on a responsible INSANE.

Should the contacted INSANE not be responsible for the DHT area the username is associated
with, the INSANE supports lookup of the responsible INSANE or an INSANE that may be able to
lookup or know the responsible INSANE. Lookup is continued until the responsible INSANE is
contacted.

Should there be no valid user-profile on the responsible INSANE, a negative feedback is returned
to the user, otherwise the password and signature of the submission are validated. Should vali-
dation fail, the ‘anonymous retrieval of data from a building server’ use case applies.

Any getter interface on building servers available for direct client access can be proxy-accessed
via an INSANE. The same information required to use the interface on the building server has to
be provided to the INSANE’s interface. Additionally, the user must provide their credentials. The

184

INSANE amends the user’s request with the corresponding submitter-ID and forwards it to the
building server. On basis of the provided submitter-ID the building server generates a modified
reply containing crowdsourced information of the user. The INSANE receives this personalised
reply from the building server and forwards the reply to the user. The user’s real identity (espe-
cially the IP-address) is concealed from the building server; however, the user’s crowdsourcing
identity (based on the submitter-ID) is disclosed.

Retrieval of all Submissions of a User

The user is required to have a valid user-profile on a responsible INSANE.

Should the contacted INSANE not be responsible for the DHT area the username is associated
with, the INSANE supports lookup of the responsible INSANE or an INSANE that may be able to
lookup or know the responsible INSANE. Lookup is continued until the responsible INSANE is
contacted.

Should there be no valid user-profile on the responsible INSANE, a negative feedback is returned
to the user, otherwise the password and signature of the submission are validated. Should val-
idation fail, the user is sent a denial of processing feedback, else the contacted INSANE gener-
ates a list of all submissions of the user based on its database entries. Should no submissions
be stored on the INSANE, a negative feedback is returned to the user, otherwise a positive feed-
back.

Retrieval of the Capability List of a User

The user is required to have a valid user-profile on a responsible INSANE.

Should the contacted INSANE not be responsible for the DHT area the username is associated
with, the INSANE supports lookup of the responsible INSANE or an INSANE that may be able to
lookup or know the responsible INSANE. Lookup is continued until the responsible INSANE is
contacted.

Should there be no valid user-profile on the responsible INSANE, a negative feedback is returned
to the user, otherwise the password and signature of the submission are validated. Should val-
idation fail, the user is sent a denial of processing feedback, else the contacted INSANE gener-
ates a list of all capabilities of the user based on its database entries. Should no capabilities be
stored on the INSANE, a negative feedback is returned to the user, otherwise a positive feed-
back.

G.1.3 Retrieval of a User’s own Submitter-ID

The user is required to have a valid user-profile on a responsible INSANE.

Should the contacted INSANE not be responsible for the DHT area the username is associated
with, the INSANE supports lookup of the responsible INSANE or an INSANE that may be able to
lookup or know the responsible INSANE. Lookup is continued until the responsible INSANE is
contacted.

Should there be no valid user-profile on the responsible INSANE, a negative feedback is returned
to the user, otherwise the password and signature of the request are validated. Should valida-
tion fail, the user is sent a denial of processing feedback, else the contacted INSANE returns the
submitter-ID corresponding to the contacting user.

185

G.2 INSANE→BUILDING SERVER COMMUNICATION

G.2.1 Setter

Comment

The use cases of this subsection assume sufficient rights of the user on the building server.
Should the user fail to have the necessary access privileges, the building server returns a
denial of processing response to the INSANE.

Submission of crowdsourced Data

This use case can only apply iff a user has requested submission of crowdsourcing data on an
INSANE.

After receiving a request for submission of crowdsourced data by a user, an INSANE contacts
the building server responsible for the building the submission affects. The INSANE is required
to be known to the building server. Should the contacted building server not know the contact-
ing INSANE, the INSANE’s information is looked up via the directory service. Should no infor-
mation be available, the building server denies the submission with a negative feedback. This
denial is forwarded as negative feedback to the user the request for submission originated at.

Should the INSANE be known to the building server, the signature of the request of the INSANE
is validated. Should validation fail, the INSANE is sent a denial of processing feedback, else the
submission’s submission-ID is checked. Should a submission with the same submission-ID al-
ready exist in the building server’s database, the INSANE is sent a denial of processing feed-
back, otherwise the submission is stored on the building server for further processing and the
INSANE is replied to with a positive feedback. Should the submitter-ID of the submission not be
known to the building server, a new submitter account is created, otherwise the submission is
amended to the list of submissions of the (known) submitter.

Deletion of crowdsourced Data

This use case can only apply iff a user has requested deletion of crowdsourcing data or deletion
of the user account or device on an INSANE.

After receiving a request for deletion of a submission by a user, an INSANE contacts the build-
ing server responsible for the building the submission deletion affects. The INSANE is required
to be known to the building server. Should the contacted building server not know the contact-
ing INSANE, the INSANE’s information is looked up via the directory service. Should no infor-
mation be available, the building server denies the selection of the submission with a negative
feedback. This denial is forwarded as negative feedback to the user the request for submission
originated at.

Should the INSANE be known to the building server, the signature of the request of the INSANE
is validated. Should validation fail, the INSANE is sent a denial of processing feedback, else the
submission’s submission-ID and submitter-ID are checked. Should no submission with the pro-
vided IDs exist in the building server’s database, the INSANE is sent a negative feedback, other-
wise the submission is deleted on the building server and the INSANE is replied to with a posi-
tive feedback.

186

Correction of crowdsourced Data

This use case should not be considered for implementation as the INSANE’s side of this use
case envisages correction of submissions by deleting the old submission and submitting a new
one.

G.2.2 Getter

Retrieval of sifted Data

This is the default use case for getter-access. It is valid for anonymous access as well as access
with false credentials.

This use case can only apply iff a user has requested retrieval of data on an INSANE.

After receiving a request for retrieval of data by a user, an INSANE contacts the building server
responsible for the building the retrieval affects. The INSANE is not required to be known to the
building server.

The building server returns the requested data on basis of the most recently sifted data-set
within its database.

Comment

Theoretically, this use case can also apply for user access this building server directly; how-
ever, the intent is to allow anonymous access, which is reduced to absurdity should the user
contact the building server directly.

Retrieval of a User-specific intermediate Crowdsourcing Data

This use case can only apply iff a user has requested retrieval of data on an INSANE.

After receiving a request for retrieval of data by a user, an INSANE contacts the building server
responsible for the building the retrieval affects. The INSANE is required to be known to the
building server. Should the contacted building server not know the contacting INSANE, the
INSANE’s information is looked up via the directory service. Should no information be available,
the ‘retrieval of sifted data’ use case applies.

Should the INSANE be known to the building server, the signature of the request of the INSANE
is validated. Should validation fail, the ‘retrieval of sifted data’ use case applies, else the submitter-
ID is checked. Should submissions with the same submitter-ID exist in the building server’s
database, the INSANE these submissions are processed into the sifted data. The modified data
is replied to the INSANE. Should no such submissions exist, the unmodified sifted data is re-
turned.

187

G.3 INSANE←BUILDING SERVER COMMUNICATION

G.3.1 Setter

Registration of a User’s Access Rights

Iff a user has not participated in the crowdsourcing, yet, when conducting their first write-access
via the INSANE, the INSANE will store the username, the used password, the client-ID, etc.,
and generate a submitter-ID as well as issue a general privilege pointer collection with no privi-
lege pointers156 and default time of validity, which is stored alongside the user data. A copy of
the privilege pointer collection can then be sent to the user’s client.
Then, the following may apply:

• A user has not participated in the crowdsourcing, yet. Before actually using the system,
they would request privileges on a building server. The maintainer of the building server –
basically an administrator – would then

– deny the privileges (end of use case), or
– grant the privileges, leading to the issuing of a building server initiated privilege pointer.

For this, the maintainer of the building server would request the user to submit their
submitter-ID and create a corresponding entry in the ACL. The list of INSANEs this
ACL entry has been shared with is empty.
As soon as the user first contacts the building server via an INSANE, the building
server checks whether the provided submitter-ID has a corresponding entry in the
ACL and if the contacting INSANE is in the list of INSANEs the ACL entry has been
shared with. As the contacting INSANE cannot be found, the privilege pointer is pushed
to the INSANE alongside the submitter-ID, and the INSANE is added to the list of
INSANEs the ACL entry has been shared with. Receiving this push, the INSANE in-
serts the privilege pointer into the user’s privilege pointer collection. The new privi-
lege pointer collection can then be sent to the user’s client. (end of use case)

• A user has already participated in the crowdsourcing. When accessing the INSANE their
privilege pointer collection – or parts of it – are deemed expired. Any privilege pointer
stored in the old privilege pointer collection which has not expired, is copied into a newly
issued privilege pointer collection, while any expired privilege pointer is not copied and
drered. The new privilege pointer collection can then be sent to the user’s client. (end of
use case)

• A user has already participated in the crowdsourcing. They request privileges on a building
server; hence, the maintainer of the building server would then

– deny the privileges (end of use case), or
– grant the privileges, leading to the issuing of a building server initiated privilege pointer.

For this, the maintainer of the building server would request the user to submit their
submitter-ID and create a corresponding entry in the ACL. The list of INSANEs this
ACL entry has been shared with is empty.
As soon as the user contacts the building server via an INSANE the next time, the
building server checks whether the provided submitter-ID has a corresponding entry
in the ACL with the contacting INSANE not being in the list of INSANEs the ACL en-
try has been shared with. As the contacting INSANE cannot be found in the list, the
privilege pointer is
pushed to the INSANE alongside the submitter-ID, and the INSANE is added to the
list of INSANEs the ACL entry has been shared with. Receiving this push, the INSANE
inserts the privilege pointer into the user’s privilege pointer collection. The new privi-
lege pointer collection can then be sent to the user’s client. (end of use case)

156This empty privilege pointer collection can be used by any building server to distribute a privilege pointer to the
server’s ACL information of the corresponding user.

188

Revocation of a User’s Access Rights

The maintainer of a building server wants to revoke a user’s access rights. After identifying all
ACL entries affected by this revocation, the building server sends a revocation command in-
cluding the submitter-ID and the privilege pointer ID(s) to all INSANEs in the list of INSANEs the
identified ACL entries had been shared with. Each contacted INSANE must remove the corre-
sponding privilege pointer from the user’s privilege pointer collection.

Request for Blocking of a User

For this use case the submitter-ID of the user to be blocked must be known to the maintainer of
a building server157.

The maintainer of a building server wants to block a user in order to prevent accesses from that
user. Corresponding to the ‘registration of a user’s access rights’ use case, the building server
creates denying ACL entries for the user. However, the privilege pointers are marked as block-
ing privilege pointers and rather than only storing the privilege pointers into the user’s privilege
pointer collections, all INSANEs storing the blocking privilege pointer for the user must actively
deny all access to the building server.

157This should be the case as a maintainer is only supposed to block users after identifying them as spammers, scam-
mers, etc.

189

190

H INTERFACE DEFINITIONS

All interfaces described within this section, regardless of the server they are hosted on (INSANE,
BSCSM or directory service), are only accessible by HTTP POST requests. This ensures that the
request variables are part of the HTTP header of the requests and are encrypted alongside the
rest of the HTTP packets158. Further, interfaces involving the transmission, storage or access of
timestamps use the ISO 8601 ‘Zulu’ format159, which bases all timestamps on the universal co-
ordinated time (UTC)160, e.g. ‘2012-10-05T16:48:13Z’ is the ‘Zulu’ representation of the point in
time at 5 October 2012, 18 hours, 48 minutes and 13 seconds central European summer time
(CEST).

Comment

The client→INSANE interfaces following in this chapter are designed to act jointly with the
MapBiquitous client conceived by Gerd Bombach. Therefore, these interface definitions are
referenced to by [Bom12], but they should not be considered sole work of the author of this
thesis. In lieu thereof, they should be considered a team effort of Gerd Bombach and the
author of this thesis.

H.1 CLIENT→INSANE

H.1.1 INSANE-internal Setter

Registration of a User and/or Device

Registers a new user and a new device or adds a device to an existing user.

• Call:
– method=registerUser&userName=USERNAME&password=PASSWORD
&clientID=SHA-256&model=MODEL-NAME&publicKey=PUBLIC-KEY
&signature=SIGNATURE

158GET requests transfer their variables within the access URL.
159‘Year-Month-DayTHour:Minute:SecondZ’
160UTC is comparable to the Greenwich Mean Time (GMT) as it seems to be the same during standard time, but it has

no daylight saving time. Additionally, GMT may vary up to 0.9 seconds from UTC as GMT is a national standard, while
UTC is an international standard.

191

• HTTP Replies (header | body):
– 201 Created |
– 303 See Other |
– 400 Bad Request | Error Message
– 403 Forbidden |

• Expectations:
– after encountering error 303 getMyINSANE should be called to reach the responsible

INSANE
– a 400 error suggests an incorrect file format, incompatible interface versions, already

existing user name or similar problems; this problem must be solved by the client
– a 403 error suggests an invalid signature; the client should resubmit its request using

a valid signature

Change a User’s Password

Changes a registered user’s password.

• Call:
– method=changePassword&userName=USERNAME&oldPassword=PASSWORD
&newPassword=PASSWORD&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK |
– 303 See Other |
– 400 Bad Request | Error Message
– 403 Forbidden |
– 404 Not Found |

• Expectations:
– after encountering error 303 getMyINSANE should be called to reach the responsible

INSANE
– a 400 error suggests an incorrect file format, incompatible interface versions, already

existing user name or similar problems; this problem must be solved by the client
– a 403 error suggests an invalid signature or password; the client should resubmit its

request using valid signature and password
– a 404 error suggests that this user is not known

H.1.2 INSANE-internal Getter

Determine the INSANE’s Hash Region in the DHT

Reports the DHT region managed by the current INSANE.

• Call:
– method=getDHTArea

• HTTP Replies (header | body):
– 200 OK | DHT Region

• Expectations:
– none

192

Identify neighbouring INSANEs

Reports a list of all INSANEs known to the current INSANE.

• Call:
– method=getDHTNeighbors

• HTTP Replies (header | body):
– 200 OK | List of all known INSANEs

• Expectations:
– none

Determine responsible INSANE

Establishes the current INSANE’s responsibilities; if this INSANE is not responsible for this user
it either, if known, reports the responsible INSANE or, if not known, another INSANE possibly
capable of helping out; this is a mixture of DNS and DHT.

• Call:
– method=getMyINSANE&username=USERNAME

• HTTP Replies (header | body):
– 302 Found | The INSANE able to respond or relegate
– 409 Conflict | Random INSANE able to respond or relegate
– 400 Bad Request | Error Message
– 404 Not Found |

• Expectations:
– a 400 error suggests an incorrect file format or incompatible interface versions; this

problem must be solved by the client
– as a 404 error can only occur due to an error in the DHT distribution the request should

be resubmitted after a short waiting period; possibly the DHT is being reconstructed
and the necessary DHT region has not been reorganized

Get Public Key

Reports the current INSANE’s public key.

• Call:
– method=getPublicKey

• HTTP Replies (header | body):
– 200 OK | Public Key

• Expectations:
– none

Fetch a User’s Submissions

Reports all submissions by the submitted user.

• Call:
– method=getMySubmissions&password=PASSWORD&clientID=SHA-256
&signature=SIGNATURE

193

• HTTP Replies (header | body):
– 200 OK / timestamp / signature* | [submissionID:Submission-JSON, ...]
– 400 Bad Request | Error Message
– 403 Forbidden |
– 404 Not Found |

*: signature is calculated using ‘result=packet-body×tamp=2012-10-02T00:39:41Z ’
• Expectations:

– a 400 error suggests an incorrect file format or incompatible interface versions; this
problem must be solved by the client

– a 403 error suggests:
∗ an invalid signature; the client should resubmit its request using a valid signature
∗ that the client device is not known to the current INSANE; most likely the current

INSANE is not responsible for the user’s DHT region
– a 404 error suggests that there is no existing submission from this device
– to avoid the 403 error a final getMyINSANE request should be completed before calling

this method

Fetch a User’s WLAN Position Correction Submissions

Reports all WLAN position correction submissions by the submitted user.

• Call:
– method=getMyWLANFingerprintingPositionCorrectionSubmissions
&password=PASSWORD&clientID=SHA-256&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK / timestamp / signature* | [submissionID:Submission-JSON, ...]
– 400 Bad Request | Error Message
– 403 Forbidden |
– 404 Not Found |

*: signature is calculated using ‘result=packet-body×tamp=2012-10-02T00:39:41Z ’
• Expectations:

– a 400 error suggests an incorrect file format or incompatible interface versions; this
problem must be solved by the client

– a 403 error suggests:
∗ an invalid signature; the client should resubmit its request using a valid signature
∗ that the client device is not known to the current INSANE; most likely the current

INSANE is not responsible for the user’s DHT region
– a 404 error suggests that there is no existing submission from this device
– to avoid the 403 error a final getMyINSANE request should be completed before calling

this method

Fetch a User’s GSM Fingerprinting Submissions

Reports all GSM fingerprinting submissions by the submitted user.

• Call:
– method=getMyGSMFingerprintSubmissions&password=PASSWORD
&clientID=SHA-256&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK / timestamp / signature* | [submissionID:Submission-JSON, ...]
– 400 Bad Request | Error Message
– 403 Forbidden |
– 404 Not Found |

194

*: signature is calculated using ‘result=packet-body×tamp=2012-10-02T00:39:41Z ’
• Expectations:

– a 400 error suggests an incorrect file format or incompatible interface versions; this
problem must be solved by the client

– a 403 error suggests:
∗ an invalid signature; the client should resubmit its request using a valid signature
∗ that the client device is not known to the current INSANE; most likely the current

INSANE is not responsible for the user’s DHT region
– to avoid the 403 error a final getMyINSANE request should be completed before calling

this method

Fetch a User’s WLAN Fingerprinting Submissions

Reports all WLAN fingerprinting submissions by the submitted user.

• Call:
– method=getMyWLANFingerprintSubmissions&password=PASSWORD
&clientID=SHA-256&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK / timestamp / signature* | [submissionID : Submission-JSON, ...]
– 400 Bad Request | Error Message
– 403 Forbidden |
– 404 Not Found |

*: signature is calculated using ‘result=packet-body×tamp=2012-10-02T00:39:41Z ’
• Expectations:

– a 400 error suggests an incorrect file format or incompatible interface versions; this
problem must be solved by the client

– a 403 error suggests:
∗ an invalid signature; the client should resubmit its request using a valid signature
∗ that the client device is not known to the current INSANE; most likely the current

INSANE is not responsible for the user’s DHT region
– to avoid the 403 error a final getMyINSANE request should be completed before calling

this method

H.1.3 Passed-through to BSCSM Setter

Delete a User or Device

Deletes one device of a user or the user including all their devices (if the user does not want to
participate in the crowdsourcing process anymore). All submissions by this user or device are
deleted.

• Call:
– method=deleteUser&username=USERNAME&password=PASSWORD
&clientID=SHA-256&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK |
– 303 See Other |
– 400 Bad Request | Error Message
– 403 Forbidden |

• Expectations:

195

– ClientID is optional, if given only this client is deleted, otherwise the user and all
clients are deleted

– after encountering error 303 getMyINSANE should be called to reach the responsible
INSANE

– a 400 error suggests an incorrect file format, incompatible interface versions, already
existing user name or similar problems; this problem must be solved by the client

– a 403 error suggests an invalid signature or password; the client should resubmit its
request using valid signature and password

Manual WLAN Position Correction (Aware Direct CS)

Corrects WLAN fingerprint data based on fingerprints previously submitted.

• Call:
– method=correctWLANFingerprintingPosition&password=PASSWORD
&clientID=SHA-256&BS=BUILDINGSERVER-ID&oldPositon=POSITION-JSON
&newPosition=POSITION-JSON&fingerprintData=FINGERPRINT-JSON
&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK |
– 400 Bad Request | Error Message
– 403 Forbidden |
– 404 Not Found |

• Expectations:
– a 400 error suggests an incorrect file format or incompatible interface versions; this

problem must be solved by the client
– a 403 error suggests:

an invalid signature; the client should resubmit its request using a valid signature
∗∗ that the client device is not known to the current INSANE; most likely the current

INSANE is not responsible for the user’s DHT region
– a 404 error suggests that the old position does not match the position reported by

the fingerprinting server; the INSANE should request the position from the building
server

– to avoid the 403 error a final getMyINSANE request should be completed before calling
this method

• Annotations:
– Structure of a POSITION-JSON:
∗ {

"building" : "tud_inf:TUD_INF",

"provider" : "FINGERPRINT",

"latitude" : 51.0256759542,

"wt_sec" : 0,

"longitude" : 13.7231337647,

"heading" : 0,

"altitude" : 0,

"timestamp" : 1348587573,

"accuracy" : 0,

"level" : 3

}

196

Submit GSM Data (Unaware Direct CS, Unaware Indirect CS)

Submits continuously collected GSM data to generate a new layer on the building server.

• Call:
– method=createGSMFingerprint&password=PASSWORD&clientID=SHA-256
&BS=BUILDINGSERVER-ID&gsmData=GSM-JSON
&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK |
– 400 Bad Request | Error Message
– 403 Forbidden |

• Expectations:
– a 400 error suggests an incorrect file format or incompatible interface versions; this

problem must be solved by the client
– a 403 error suggests:
∗ an invalid signature; the client should resubmit its request using a valid signature
∗ that the client device is not known to the current INSANE; most likely the current

INSANE is not responsible for the user’s DHT region
– to avoid the 403 error a final getMyINSANE request should be completed before calling

this method
• Annotations:

– Structure of a GSM-JSON:
∗ {

"GSMmeasurment" : {
"Location" : "51.0257241256442;13.722872620470596",
"Building" : "INF",
"Floor" : "3",
"CellID" : "29773",
"Provider" : "Vodafone",
"Strenght" : "-63",
"Time" : timestamp
"Fingerprint" : {. . .}

},
"GSMmeasurment" : {. . .}

}

Upload WLAN Fingerprint (Unaware Indirect CS)

Submit a new WLAN fingerprint, multiple measurements are possible.

• Call:
– method=createWLANFingerprint&password=PASSWORD&clientID=SHA-256
&BS=BUILDINGSERVER-ID&position=POSITION-JSON&samples=SAMPLES-JSON
&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK |
– 400 Bad Request | Error Message
– 403 Forbidden |

• Expectations:
– a 400 error suggests an incorrect file format or incompatible interface versions; this

problem must be solved by the client
– a 403 error suggests:
∗ an invalid signature; the client should resubmit its request using a valid signature

197

∗ that the client device is not known to the current INSANE; most likely the current
INSANE is not responsible for the user’s DHT region

– to avoid the 403 error a final getMyINSANE request should be completed before calling
this method

• Annotations:
– Structure of a POSITION-JSON:
∗ {

"building" : "tud_inf:TUD_INF",
"latitude" : 51.02567595421748,
"wt_sec" : 0.0,
"longitude" : 13.723133764723404,
"heading" : 0.0,
"altitude" : 0.0,
"timestamp" : 0,
"accuracy" : 0.0,
"level" : 3

}
– Structure of a SAMPLES-JSON:
∗ [

{
"ap_mac" : "08:17:35:33:59:00",
"y" : 0.0,
"x" : 0.0,
"latitude" : 0.0,
"longitude" : 0.0,
"ap_signal" : -68,
"id" : 0,
"floor" : 0

},
{"ap_mac" : . . .}

]

Delete Submission

Deletes a specific submission.

• Call:
– method=deleteSubmission&password=PASSWORD&clientID=SHA-256
&submissionID=ISO-8601-TIMESTAMP:SHA-256&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK |
– 400 Bad Request | Error Message
– 403 Forbidden |
– 404 Not Found |
– 502 Bad Gateway | Error Message

• Expectations:
– a 400 error suggests an incorrect file format or incompatible interface versions; this

problem must be solved by the client
– a 403 error suggests:
∗ an invalid signature; the client should resubmit its request using a valid signature
∗ that the client device is not known to the current INSANE; most likely the current

INSANE is not responsible for the user’s DHT region
– a 502 error suggests:
∗ an invalid signature within the building server’s response; the client is to decide

whether to repeat the request
∗ an error within the building server, e.g. 500

– to avoid the 403 error a final getMyINSANE request should be completed before calling
this method

198

H.1.4 Passed-through to BSCSM Getter

Fetch WFS Data from a Building Server

Requests WFS data from a building server using the INSANE. If user access information is pro-
vided the results include the user’s crowdsourcing submissions, otherwise the WFS request is
anonymous and only public information is returned.

• Call:
– method=getWFSDataFromBS&password=PASSWORD&clientID=SHA-256
&BS=BUILDINGSERVER-ID&SERVICE=SERVICE&VERSION=VERSION
&REQUEST=REQUEST&TYPENAME=TYPENAME&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK / timestamp / signature* | Computed building server response
– 400 Bad Request | Error Message
– 403 Forbidden |
– 502 Bad Gateway | Error Message

*: signature is calculated using ‘result=packet-body×tamp=2012-10-02T00:39:41Z ’
• Expectations:

– a 400 error suggests an incorrect file format or incompatible interface versions; this
problem must be solved by the client

– a 403 error suggests:
∗ an invalid signature; the client should resubmit its request using a valid signature
∗ that the client device is not known to the current INSANE; most likely the current

INSANE is not responsible for the user’s DHT region
– a 502 error suggests:
∗ an invalid signature within the building server’s response; the client is to decide

whether to repeat the request
∗ an error within the building server, e.g. 500

– to avoid the 403 error a final getMyINSANE request should be completed before calling
this method

Fetch Fingerprinting Position from a Building Server

Requests fingerprinting data from a building server using the INSANE. If user access informa-
tion is provided the results include the user’s crowdsourcing submissions, otherwise the finger-
printing request is anonymous and only public information is returned.

• Call:
– method=getWLANFingerprintingPositionFromBS&password=PASSWORD
&clientID=SHA-256&BS=BUILDINGSERVER-ID&accesspoints=AP-JSON
&prev_position=PP-JSON&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK / timestamp / signature* | Computed building server response
– 400 Bad Request | Error Message
– 403 Forbidden |
– 502 Bad Gateway | Error Message

*: signature is calculated using ‘result=packet-body×tamp=2012-10-02T00:39:41Z ’
• Expectations:

– a 400 error suggests an incorrect file format or incompatible interface versions; this
problem must be solved by the client

– a 403 error suggests:
∗ an invalid signature; the client should resubmit its request using a valid signature

199

∗ that the client device is not known to the current INSANE; most likely the current
INSANE is not responsible for the user’s DHT region

– a 502 error suggests:
∗ an invalid signature within the building server’s response; the client is to decide

whether to repeat the request
∗ an error within the building server, e.g. 500

– to avoid the 403 error a final getMyINSANE request should be completed before calling
this method

• Annotations:
– Structure of an AP-JSON:
∗ [

{
"ssid" : "08:17:35:33:59:0F",
"signal_strength" : -67

},
{

"ssid" : "08:17:35:33:59:01",
"signal_strength" : -67

},
. . .

]
– Structure of a PP-JSON:
∗ {

"building" : "tud_inf:TUD_INF",
"provider" : "FINGERPRINT",
"latitude" : 51.0256759542,
"wt_sec" : 0,
"longitude" : 13.7231337647,
"heading" : 0,
"altitude" : 0,
"timestamp" : 1348587573,
"accuracy" : 0,
"level" : 3

}

H.2 INSANE→BSCSM

H.2.1 BSCSM-internal Setter

Submit GSM Data (Unaware Direct CS, Unaware Indirect CS)

Submits continuously collected GSM data to generate a new layer on the building server.

• Call:
– method=createGSMFingerprint&submissionID=ISO-8601-TIMESTAMP:SHA-256
&insaneID=INSANE-ID&submitterID=SHA-256&model=MODEL
&gsmData=GSM-JSON&signature=SIGNATURE

• HTTP Replies (header | body):
– 202 Accepted |
– 400 Bad Request | Error Message
– 403 Forbidden |
– 502 Bad Gateway |

200

• Expectations:
– a 400 error suggests an incorrect file format, incompatible interface versions or the

submissionID’s SHA-256 Hash not corresponding to the submission’s content
– a 403 error suggests:
∗ an invalid signature; the INSANE should resubmit its request using a valid signa-

ture
∗ the calling INSANE is not known
∗ the submitter account using this submitterID does not have the rights necessary

to upload GSM fingerprinting submissions
∗ there already exists a submission using this submissionID

– a 502 error suggests failed internal communication between BSCM and fingerprinting
module

– As this method supports INSANE autodiscover using the directory service, informa-
tion can be retrieved by unknown INSANEs. Nevertheless the communication proto-
col stipulates that an INSANE is to check its registration status using
getINSANERegistrationState before calling this method.
If getINSANERegistrationState returns 404 the calling INSANE should register itself
using registerAtINSANE. Only iff a 200 is received may the INSANE call
createGSMFingerprint.

• Annotations:
– Structure of a GSM-JSON: analogous to createGSMFingerprint at an INSANE

Submit WLAN fingerprint (Unaware Indirect CS)

Submit a new WLAN fingerprint, multiple measurements are possible.

• Call:
– method=createWLANFingerprint&submissionID=ISO-8601-TIMESTAMP:SHA-256
&insaneID=INSANE-ID&submitterID=SHA-256&model=MODEL
&position=POSITION-JSON&samples=SAMPLES-JSON
&signature=SIGNATURE

• HTTP Replies (header | body):
– 202 Accepted |
– 400 Bad Request | Error Message
– 403 Forbidden |
– 502 Bad Gateway |

• Expectations:
– a 400 error suggests an incorrect file format, incompatible interface versions or the

submissionID’s SHA-256 Hash not corresponding to the submission’s content
– a 403 error suggests:
∗ an invalid signature; the INSANE should resubmit its request using a valid signa-

ture
∗ the calling INSANE is not known
∗ the submitter account using this submitterID does not have the rights necessary

to upload WLAN fingerprinting submissions
∗ there already exists a submission using this submissionID

– a 502 error suggests failed internal communication between BSCM and fingerprinting
module

– As this method supports INSANE autodiscover using the directory service, informa-
tion can be retrieved by unknown INSANEs. Nevertheless the communication proto-
col stipulates that an INSANE is to check its registration status using
getINSANERegistrationState before calling this method.
If getINSANERegistrationState returns 404 the calling INSANE should register itself
using registerAtINSANE. Only if a 200 is received may the INSANE call
createWLANFingerprint.

• Annotations:
– Structure of the POSITION-JSON and SAMPLES-JSON is analogous to
createWLANFingerprint at an INSANE

201

Delete Submission

Deletes a submission by Submission-ID.
(this method must be invoked by an INSANE)

• Call:
– method=deleteSubmission&submissionID=ISO-8601-TIMESTAMP:SHA-256
&insaneID=INSANE-ID&submitterID=SHA-256
&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK |
– 400 Bad Request | Error Message
– 403 Forbidden |
– 404 Not Found |
– 502 Bad Gateway | Error Message

• Expectations:
– a 400 error suggests an incorrect file format or incompatible interface versions; this

problem must be solved by the INSANE
– a 403 error suggests:
∗ an invalid signature; the INSANE should resubmit its request using a valid signa-

ture
∗ the current building server does not know the calling INSANE
∗ the submitter account using this submitterID does not have the rights necessary

to upload WLAN fingerprinting submissions
– a 404 error suggests:
∗ there is no known submitter using this Submitter-ID
∗ there is no submission by this Submission-ID

– a 502 error suggests failed internal communication between BSCM and fingerprinting
module

– As this method supports INSANE autodiscover using the directory service, informa-
tion can be retrieved by unknown INSANEs. Nevertheless the communication proto-
col stipulates that an INSANE is to check its registration status using
getINSANERegistrationState before calling this method.
If getINSANERegistrationState returns 404 the calling INSANE should register itself
using registerAtINSANE. Only if a 200 is received may the INSANE call
deleteSubmission.

H.2.2 BSCSM-internal Getter

Determine Position based on Fingerprinting Information

Computes the most likely position using the submitted WLAN fingerprint.

• Call:
– method=getWLANFingerprintingPosition&accesspoints=FP-JSON
&prev_position=Position-JSON&insaneID=INSANE-ID&submitterID=SHA-256
×tamp=TIMESTAMP&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK | XML representation including the position
– 400 Bad Request | Error Message
– 403 Forbidden |
– 502 Bad Gateway |

202

• Expectations:
– Three access types are supported:
∗ INSANE-ID and submitterID empty :

Direct access by a client; no Anonymity; fingerprinting information is retrieved
without alterations

∗ INSANE-ID set, submitterID empty :
Anonymised access using an INSANE; fingerprinting information is retrieved
without alterations

∗ INSANE-ID and submitterID set:
Crowdsourcing-based access; fingerprinting information is retrieved including
submissions by submitterID

– a 400 error suggests an incorrect file format or incompatible interface versions; this
problem must be solved by the client/INSANE

– a 403 error suggests an invalid signature; the INSANE should resubmit its request
using a valid signature

– a 502 error suggests failed internal communication between BSCM and fingerprinting
module

– As this method supports INSANE autodiscover using the directory service, informa-
tion can be retrieved by unknown INSANEs. Nevertheless the communication proto-
col stipulates that an INSANE is to check its registration status using
getINSANERegistrationState before calling this method.
If getINSANERegistrationState returns 404 the calling INSANE should register itself
using registerAtINSANE. Only if a 200 is received may the INSANE call
getWLANFingerprintingPosition.

Fetch WFS Information

Reports WFS information retrieved from the geoserver module, either anonymously or crowdsourcing-
based.

• Call:
– method=getWFS&SERVICE=SERVICE&VERSION=VERSION&REQUEST=REQUEST
&TYPENAME=TYPENAME&insaneID=INSANE-ID&submitterID=SHA-256
×tamp=TIMESTAMP&signature=SIGNATURE

• HTTP Replies (header | body):
– 200 OK | XML representation including the position
– 400 Bad Request | Error Message
– 403 Forbidden |
– 502 Bad Gateway |

• Expectations:
– Two access types are supported:
∗ INSANE-ID set, submitterID empty:

Anonymised access using the INSANE; WFS information is retrieved without al-
terations

∗ INSANE-ID and submitterID set:
Crowdsourcing-based access; WFS information is retrieved including submis-
sions by submitterID

– a 400 error suggests an incorrect file format or incompatible interface versions; this
problem must be solved by the INSANE

– a 403 error suggests an invalid signature; the INSANE should resubmit its request
using a valid signature

– a 502 error suggests failed internal communication between BSCM and fingerprinting
module

– As this method supports INSANE autodiscover using the directory service, informa-
tion can be retrieved by unknown INSANEs. Nevertheless the communication proto-
col stipulates that an INSANE is to check its registration status using
getINSANERegistrationState before calling this method.
If getINSANERegistrationState returns 404 the calling INSANE should register itself
using registerAtINSANE. Only if a 200 is received may the INSANE call getWFS.

203

Determine Registration Status of an INSANE

Checks whether an INSANE is already registered with the building server.

• Call:
– method=getINSANERegistrationState&insaneID=INSANE-ID

• HTTP Replies (header | body):
– 302 Found |
– 400 Bad Request | Error Message
– 404 Not Found |

• Expectations:
– a 400 error suggests an incorrect file format, incompatible interface versions, already

existing user name or similar problems; this problem must be solved by the INSANE

Get Public Key

Reports the public key of the current INSANE.

• Call:
– method=getPublicKey

• HTTP Replies (header | body):
– 200 OK | Public Key

• Expectations:
– none

H.2.3 INSANE-endorsed BSCSM-internal/external Setter

Registration at an INSANE

Initiates the information exchange between an INSANE and a BSCSM. The BSCSM should reg-
ister itself at the calling INSANE, while the INSANE is registered at the building server.

• Call:
– method=registerAtINSANE&insaneName=INSANE-ID

• HTTP Replies (header | body):
– 201 Created |
– 400 Bad Request | Error Message
– 404 Not Found |
– 424 Failed Dependency |

• Expectations:
– a 400 error suggests an incorrect file format or incompatible interface versions; this

problem must be solved by the INSANE
– a 424 error suggests one of two cases:
∗ the directory service could not be reached
∗ the INSANE was found using the directory service but does not reply or encoun-

tered an error when calling the method registerBuildingServer

204

H.3 INSANE←BSCSM

H.3.1 INSANE-internal Setter

Register a Building Server

Registers a building server at the INSANE.

• Call:
– method=registerBuildingServer&bsName=BUILDINGSERVER-ID

• HTTP Replies (header | body):
– 201 Created |
– 400 Bad Request | Error Message
– 404 Not Found |
– 502 Bad Gateway |

• Expectations:
– a 400 error suggests an incorrect file format, incompatible interface versions, already

existing user name or similar problems; this problem must be solved by the building
server

– a 404 error suggests that the directory service could not find a building server by this
name

– a 502 error suggests an error within the directory service or a failed call of
getPublicKey following a successful directory request

H.4 ∗ →DIRECTORY SERVICE

H.4.1 Directory Service Getter

Search for Building Servers by Geo-Location (Position Box)

Searches for building servers within a given position box, defined by minimum and maximum
longitude as well as minimum and maximum latitude.

• Call:
– minLat=WGS84Lat&maxLat=WGS84Lat&minLon=WGS84Lon&maxLon=WGS84Lon

• HTTP Replies (header | body):
– 200 OK | XML representation of the building server information
– 400 Bad Request | HTML resource
– 404 Not Found |

• Expectations:
– a 400 error suggests a missing variable; this problem must be solved by the requester

205

Search for a Building Server by Name

Searches for a building server by its name. This method should return none or exactly one build-
ing server, otherwise something is wrong.

• Call:
– name=NAME

• HTTP Replies (header | body):
– 200 OK | XML representation of the building server information
– 400 Bad Request | HTML resource
– 404 Not Found |

• Expectations:
– a 400 error suggests a missing variable; this problem must be solved by the requester

Search for INSANEs by Geo-Location (RFC 920 Country Code)

Searches for INSANEs within a geo-location given by a RFC 920 country code, e.g. ‘DE’.

• Call:
– region=RFC920-CODE

• HTTP Replies (header | body):
– 200 OK | XML representation of the INSANE information
– 400 Bad Request | HTML resource
– 404 Not Found |

• Expectations:
– a 400 error suggests a missing variable; this problem must be solved by the requester

Search for an INSANE by Name

Searches for an INSANE by its name. This method should return none or exactly one INSANE,
otherwise something is wrong.

• Call:
– insane=NAME

• HTTP Replies (header | body):
– 200 OK | XML representation of the INSANE information
– 400 Bad Request | HTML resource
– 404 Not Found |

• Expectations:
– a 400 error suggests a missing variable; this problem must be solved by the requester

206

I UNACCOUNTED-FOR EVALUA-
TION SETTINGS

As mentioned in the proceedings, four settings were not considered for the evaluation of the
performance and scalability aspects of the newly implemented components. However, these
four settings may help to improve the quality of the network in the affected parts of the faculty
building, so they are provided here. Ex ante, the results are not very pleasing as they show that
about 50% of all packets are lost for 100 parallel competing requests. For 1000 and more com-
peting requests over 70% of the packets are lost.

1. LAN Setting

• The machines simulating the clients, a machine acting as an INSANE and the actual
building server machine (‘CARLOS’) were connected in a local area network161 within
the faculty building of the Faculty of Computer Science at TUD.

• This setting is designed to run under laboratory conditions.
• The conceptual setup is displayed in Figure I.0.1.

2. ‘CARLOS’ setting

• The machines simulating the clients were placed out of campus in an apartment162 as
well as a server farm north-west of Dresden, Saxony. ‘Carlos’ acted as INSANE while
also facilitating as building server.

• This setting is designed to put double load on ‘CARLOS’.
• The conceptual setup is displayed in Figure I.0.2.

3. the-tester.de setting

• The machines simulating the clients were placed out of campus in an apartment162 as
well as a server farm north-west of Dresden, Saxony. An actual INSANE at
http://insane.the-tester.de was used. ‘CARLOS’ facilitated as building server.

• This setting is designed to simulate actual access behaviour.
• The conceptual setup is displayed in Figure I.0.3.

4. hara.tc setting

• The machines simulating the clients were placed out of campus in an apartment162 as
well as a server farm north-west of Dresden, Saxony. An actual INSANE at
http://insane.hara.tc was used. ‘CARLOS’ facilitated as building server.

• This setting is designed to simulate actual access behaviour.
• The conceptual setup is displayed in Figure I.0.4.

161The virtual clients running on the VPS in a server farm were connected from outside the LAN.
162Connected to the internet via a DSL-6000 connection.

207

http://insane.the-tester.de
http://insane.hara.tc

All four settings rely on ‘CARLOS’ as building server. This is due to the fact that only four build-
ings are currently supported by the MapBiquitous project, and all of them are hosted on ‘CARLOS’.
Further, time and financial resources did not permit to set up another building server, even when
simply copying the data from ‘CARLOS’.

Figure I.0.1: Conceptual layout of the LAN setting

Figure I.0.2: Conceptual layout of the ‘CARLOS’ setting

The basic idea starting into the evaluation of resource use and communication load is to prove
that the results are strongly correlated to the hardware and general load of the servers. This
would prove comparability of the scalability results to general web servers, and as such would
allow to simply apply findings of web server tests to the MapBiquitous server components. In
order to generate comparable results for getter as well as setter access, two types of series of
measurements were conducted for all four settings described above.

1. A series-type focussed on a WFS request, namely ‘?SERVICE=wfs&VERSION=1.0.0
&REQUEST=GetFeature&TYPENAME=tud_inf:TUD_INF_G&’ addressed at the building server
‘tud_inf:TUD_INF’ was evaluated.

2. A series-type focussed on the creation of a WLAN fingerprint, namely consisting of six
samples of length 177 Byte each, also addressed at ‘tud_inf:TUD_INF’ was evaluated.

The interfaces descriptions as given in Appendix H apply for both types. System loads were di-
rectly recorded from ‘uptime’ on the Linux-machines and ‘typeperf "\Processor(_Total)\%
Processor Time"’ on the Windows-machines, and the network statistics were retrieved via
‘ab’163 and ‘Wireshark’.164

163http://httpd.apache.org/docs/2.2/programs/ab.html – Accessed 12 October 2012
164Wireshark 1.8.3 was used in recording mode. The log-files were evaluated after the measurements, as live-evaluation

would have falsified the results by adding further load to the machines.

208

http://httpd.apache.org/docs/2.2/programs/ab.html

Figure I.0.3: Conceptual layout of the the-tester.de setting

Figure I.0.4: Conceptual layout of the hara.tc setting

209

Both series types were conducted for different amounts of parallel client requests and were
repeated ten times. The results were then averaged in one representative result table for each
setting and type.

I.0.2 WFS Request Series

The results for the first series type can be found in tables F.5.1 to F.5.4. Additionally, they are
visualised in figures I.0.5 to I.0.8.

Figure I.0.5: Packet transmission statistics for WFS requests and replies in the LAN setting

The results of the first series-type clearly show an exponential correlation between the amount
of parallel client requests and the packet losses as well as the successful replies. This is not
surprising as the communication follows a linear path, from the client to the INSANE, to the
BSCSM, to the WFS-service, back to the BSCSM, back to the INSANE and finally back to the
client. Comparing all four settings, the major source of packet loss seems to be the interface
to ‘CARLOS’, where the BSCSM seems to miss out on packets as well as the WFS-service
which also seems to miss out on packets. Analysing even deeper into the numbers, two critical
thresholds can be identified; one at approximately 40 parallel requests and one at approximately
70 parallel requests.

Of the two thresholds, the first seems to be the maximum amount of requests ‘CARLOS’ can
handle in parallel. Surpassing the threshold, ‘CARLOS’ starts dropping packets from the net-
work queue. Strangely, the same threshold applies for internal (i.e. localhost/127.0.0.1) com-
munication within ‘CARLOS’. – The surmise is, that the high base idling load of ‘CARLOS’ is re-
sponsible. However, the internals of the processing queue, etc. of ‘CARLOS’ were impossible
to disclose.

Then, the second threshold is definitely the maximum amount of requests the VPS servers run-
ning the-tester.de and hara.tc can handle without packet loss. This coincides totally with the

210

Figure I.0.6: Packet transmission statistics for WFS requests and replies in the ‘CARLOS’ set-
ting

Figure I.0.7: Packet transmission statistics for WFS requests and replies in the the-tester.de
setting

211

Figure I.0.8: Packet transmission statistics for WFS requests and replies in the hara.tc setting

normal operational specifics of the VPS. However, even though packets are dropped from the
network queue, a maximum of about 5000 requests and replies can be handled by the deployed
INSANEs, which coincides with diverse recommendations for similar server configurations. As
there are hundreds of such recommendations that this can really be considered general knowl-
edge, the interested reader shall exemplary be referred to the manual for the Apache httpd web
server at http://httpd.apache.org/docs/2.0/.

Summarising, the INSANE as implemented follows the operating figures of any general web
server. This is not surprising as it is running on PHP in Apache httpd. Even without having the
implemented BSCSM deployed on servers other than ‘CARLOS’, it is fair to apply the same
result to the BSCSM as it shares the same code base with the INSANE. The actual bottleneck
seems to be ‘CARLOS’ and possibly the WFS server which runs on Java in Apache Tomcat.
Therefore, additional evaluation should be conducted with different hardware, i.e. deploy WFS
server and BSCSM on a machine other than ‘CARLOS’. However, this can only be considered a
concluding recommendation, as time and financial resources do not permit such course of ac-
tion in the moment.

I.0.3 Fingerprinting Request Series

Applying the same operating figures to the second series as in section 8.2.2, the average size of
a fingerprinting packet sent from the client to the INSANE is 1061 Byte. The forwards from the
INSANE to the building server has an average size of 1172 Byte and within the building server 8
requests of a total of 1083 Byte are sent. Therefore, the evaluation of the fingerprinting series
was conducted using actual fingerprinting samples matching the average size. Especially the
fragmentation of the original fingerprinting request sent by the client into eight requests by the
BSCSM is worth investigating. Presumably, the fragmentation leads to information loss, as the
fingerprinting server requires one packet to start the fingerprinting, six packets for the samples
and one final packet closing the fingerprinting.

212

http://httpd.apache.org/docs/2.0/

The results for the second series-type can be found in in tables F.5.5 to F.5.8; they are visualised
in figures I.0.9 to I.0.12.

Figure I.0.9: Packet transmission statistics for fingerprinting requests and replies in the LAN
setting

As true for the WFS-series, these results clearly show an exponential correlation between the
amount of parallel client requests and the packet losses as well as the successful replies. Once
again, this is not surprising as the communication follows the same linear path as the WFS
communication. However, a discrepancy between ‘HTTP/1.1 200 OK’ replies and actually suc-
cessfully created fingerprints is obvious. Especially in the LAN setting not all created finger-
prints have a corresponding success-reply sent165 to the clients.

With a certain degree of likelihood, the discrepancy can only be explained by the interplay of a
communication error and an implementation error. The most likely explanation would be that
not all samples were received by the fingerprinting server in the course of the evaluation. Then,
the fingerprinting server would have initialised fingerprint-creation after receiving the initial packet
and would have successfully closed the fingerprint after receiving the final packet. In between,
from the six samples enclosed by the initial and final packet, not all would have been received.
This would be the communication error. However, the initial packet of the fingerprinting proce-
dure clearly transmits the amount of samples to be expected to the fingerprinting server. There-
fore, it seems to be a reasonable assumption to blame an implementation error in [Gru12], as
the amount of samples seem to be ignored.

Another explanation, however very unlikely166, could be the loss of packets – especially initial
and final fingerprinting packets – combined with the very unlikely choosing of the same random
integer by different clients at the same time.

165‘Sent’ is the correct choice of phrasing here, as packets lost while transmission and hence even fewer being received
by the clients are not even considered, yet.

166Assuming evenly distributed selection of random integers, the likelihood of this explanation is 1 : 2147483647.5.

213

Figure I.0.10: Packet transmission statistics for fingerprinting requests and replies in the
‘CARLOS’ setting

Figure I.0.11: Packet transmission statistics for fingerprinting requests and replies in the the-
tester.de setting

214

Figure I.0.12: Packet transmission statistics for fingerprinting requests and replies in the hara.tc
setting

Comparing all four settings, the major source of packet loss once again seems to be the inter-
face to ‘CARLOS’, where the BSCSM seems to miss out on packets as well as the fingerprint-
ing server which also seems to miss out on packets. Very similar thresholds as found for the
WFS-series can be identified. Therefore, the same conclusions apply.

Summarising, the INSANE and the BSCSM as implemented both follow the operating figures of
any general web server. The actual bottleneck remains to be ‘CARLOS’ or the network it resides
in, and possibly a deficient implementation of the fingerprinting server. – Additional evaluation
should be conducted to find the source of the abnormal packet loss rate.

215

	Abstract
	The Task
	Contents
	List of Definitions and Theorems
	List of Figures
	List of Tables
	Introduction and Motivation
	Part I Propaedeutics
	Preliminaries
	Mathematic Fundamentals
	Further Definitions
	The MapBiquitous Project
	History
	Functional range
	Architecture
	MapBiquitous data – storage and access
	Navigation

	Crowdsourcing
	Attempt at a Definition
	Taxonomy of Crowdsourcing
	Social Sensing

	Existing Crowdsourcing Concepts
	Scientific Ansatzes
	Geowiki: Creation of Outdoor Maps utilising Crowdsourcing
	Motivation of the Crowd
	GSM Measurements as an unaware indirect Crowdsourcing Method

	Commercial Ansatzes
	Google Indoor Maps
	Unaware Crowdsourcing: Traffic Congestion Prediction

	Conclusion

	Related Work
	BOINC – Berkeley Open Infrastructure for Network Computing

	Part II Proceedings
	Requirements Review
	Data Protection Issues
	Legal Boundaries in the Federal Republic of Germany
	Collectible Data
	Protectable Data

	Data required by MapBiquitous
	MapBiquitous: Data Collection, Storage, Processing and Protection

	Conclusion

	Crowdsourced Optimisation Concept
	Crowdsourcing Client
	Crowdfunding Server
	Anonymity and Identification of Clients
	Safety from Interception through Encryption
	Unaltered Directory Server and Modified Building Server
	Indoor Navigation Server Access Network Entity
	Access Control Lists, Privilege Pointers, Resigning and Re-encryption
	Database Structure: Building Server amendment and new INSANE
	Optimisation towards Scalability: Distributed Hash Tables with DNS
	Summary

	Interplay of Client and Server
	Extensible MapBiquitous Crowdsourcing Communication Protocol

	Conclusion

	Proof of Concept within MapBiquitous
	Problems
	Deviations from the Concept
	The Implementation
	Conclusion

	Evaluation
	Conformity of the Implementation to the Design Goals
	Comparison of old and new Communication
	Comparison of the WFS requests
	Comparison of WLAN-Fingerprinting Communication
	Conclusion for Fingerprinting and Positioning

	Resource Use and Communication Load compared to "Default Websites"
	Exemplary Recommendations for Deployment

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Part III Appendix
	Milestones
	Glossary
	References
	Auxiliary Means

	Part IV Supplementary
	Proofs and Definitions
	Code Snippets
	Scheduled Task on CARLOS
	HTTP-Handler Module in the INSANE and BSCSM
	getCountry() and associated Functions
	JSON_Handler.php
	Exemplary Definition Block

	Tables
	Fingerprinting Overhead Results
	Positioning Overhead Results
	Hardware used for Performance and Scalability Tests
	Performance and Scalability Results
	Unaccounted-for Performance and Scalability Results
	WFS-Series
	Fingerprinting Series

	Use Cases
	Client->INSANE Communication
	Setter
	Getter
	Retrieval of a User's own Submitter-ID

	INSANE->Building Server Communication
	Setter
	Getter

	INSANE<-Building Server Communication
	Setter

	Interface Definitions
	Client->INSANE
	INSANE-internal Setter
	INSANE-internal Getter
	Passed-through to BSCSM Setter
	Passed-through to BSCSM Getter

	INSANE->BSCSM
	BSCSM-internal Setter
	BSCSM-internal Getter
	INSANE-endorsed BSCSM-internal/external Setter

	INSANE<-BSCSM
	INSANE-internal Setter

	*->Directory Service
	Directory Service Getter

	Unaccounted-for Evaluation Settings
	WFS Request Series
	Fingerprinting Request Series

